Publicación: Scale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis
| dc.contributor.author | Sierra Porta, David | |
| dc.contributor.researchgroup | Grupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS | |
| dc.contributor.seedbeds | Semillero de Investigación en Astronomía y Ciencia de Datos | |
| dc.date.accessioned | 2025-11-04T19:17:09Z | |
| dc.date.issued | 2025-11-01 | |
| dc.description | Contiene gráficos | |
| dc.description.abstract | Galactic cosmic rays (GCR) modulate atmospheric ionisation and may influence reactive greenhouse gases, yet linear correlations have proved inconclusive. We analyse 74 328 hourly observations (2016–2024) of pressure-corrected neutron-monitor counts and co-located CH and O mixing ratios from the high-alpine Jungfraujoch station using Multifractal Detrended Fluctuation Analysis (MFDFA) and its bivariate extension (MFDCCA). Cosmic rays exhibit a narrow, quasi-monofractal singularity spectrum (), consistent with heliospheric modulation as a single dominant driver, whereas O and CH display progressively broader spectra ( and 0.84). Cross-Hurst exponents exceed unity for small-to-moderate fluctuations, indicating super-persistent joint variability on 1–7 d (O) and 7–30 d (CH) horizons—time-scales compatible with HO/NO chemistry triggered by GCR ionisation. Quadratic fits to the cross-singularity spectra yield half-maximum widths of 0.39 (CH–GCR) and (O–GCR), quantifying a broader amplitude hierarchy for methane. Extreme gas anomalies, by contrast, show weak cross persistence, implicating dynamical intrusions rather than ionisation. Multifractal metrics thus expose a scale-selective GCR imprint masked in Pearson and Spearman statistics and suggest that incorporating GCR flux as a multiscale covariate could improve sub-monthly O/CH predictions. The approach provides a transferable framework for disentangling cosmic-ray forcing from chemical and dynamical controls in other trace-gas records. | |
| dc.description.researcharea | Clima espacial y rayos cósmicos | |
| dc.format.extent | 21 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | D. Sierra-Porta, Scale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 277, 2025, 106661, ISSN 1364-6826, https://doi.org/10.1016/j.jastp.2025.106661. | |
| dc.identifier.doi | https://doi.org/10.1016/j.jastp.2025.106661 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14269 | |
| dc.language.iso | eng | |
| dc.relation.references | Bianchi, S., 2020. fathon: A python package for a fast computation of detrendend fluctuation analysis and related algorithms. Journal of Open Source Software 5, 1828. doi:https://doi.org/10.21105/joss.01828. | |
| dc.relation.references | Brune, W., Miller, D., Thames, A., Allen, H., Apel, E., Blake, D., Bui, T., Commane, R., Crounse, J., Daube, B., et al., 2020. Exploring oxidation in the remote free troposphere: Insights from atmospheric tomography (atom). Journal of Geophysical Research: Atmospheres 125, e2019JD031685. doi:https://doi.org/10.1029/2019JD031685. | |
| dc.relation.references | Calisto, M., Usoskin, I., Rozanov, E., Peter, T., 2011. Influence of galactic cosmic rays on atmospheric compo sition and dynamics. Atmospheric Chemistry and Physics 11, 4547–4556. doi:https://doi.org/10.5194/ 503 acp-11-4547-2011. | |
| dc.relation.references | Carslaw, K., Harrison, R., Kirkby, J., 2002. Cosmic rays, clouds, and climate. science,1732–1737. doi:https: 505 //doi.org/10.1126/science.1076964. | |
| dc.relation.references | Catone, D., Castrovilli, M.C., Nicolanti, F., Satta, M., Cartoni, A., 2023. Formation of h 3 o+ and oh by co 2 and n 2 o trace gases in the atmospheric environment. Physical Chemistry Chemical Physics 25, 25619–25628. doi:https: //doi.org/10.1039/D3CP02427J. | |
| dc.relation.references | Christodoulakis et al., 2019 J. Christodoulakis, C. Varotsos, H. Mavromichalaki, M. Efstathiou, M. Gerontidou On the link between atmospheric cloud parameters and cosmic rays J. Atmos. Sol.-Terr. Phys., 189 (2019), pp. 98-106, 10.1016/j.jastp.2019.04.012 | |
| dc.relation.references | Donnini, 2021 F. Donnini Cosmic ray nuclei: results from AMS-02 Phys. At. Nucl., 84 (6) (2021), pp. 956-965, 10.1134/S1063778821130081 | |
| dc.relation.references | Ellis, 2007 C. Ellis The sampling properties of hurst exponent estimates Phys. A, 375 (1) (2007), pp. 159-173, 10.1016/j.physa.2006.08.046 | |
| dc.relation.references | Friis-Christensen and Svensmark, 1997 E. Friis-Christensen, H. Svensmark What do we really know about the sun-climate connection? Adv. Space Res., 20 (4–5) (1997), pp. 913-921, 10.1016/S0273-1177(97)00499-7 | |
| dc.relation.references | Gong et al., 2025 S. Gong, L. Duan, J. Zhao, X. Wei, J. Feng, Z. Li Temporal correlation between positive-charged cosmic ray flux and solar polar field variation: Insights from delayed modulation analysis Phys. Rev. D, 111 (8) (2025), Article 083050, 10.1103/PhysRevD.111.083050 | |
| dc.relation.references | Gorjão et al., 2022 L.R. Gorjão, G. Hassan, J. Kurths, D. Witthaut MFDFA: Efficient multifractal detrended fluctuation analysis in python Comput. Phys. Comm., 273 (2022), Article 108254, 10.1016/j.cpc.2021.108254 | |
| dc.relation.references | Grenfell et al., 2007 J.L. Grenfell, J.M. Grießmeier, B. Patzer, H. Rauer, A. Segura, A. Stadelmann, B. Stracke, R. Titz, P. Von Paris Biomarker response to galactic cosmic ray-induced NO x and the methane greenhouse effect in the atmosphere of an earth-like planet orbiting an M dwarf star Astrobiology, 7 (1) (2007), pp. 208-221, 10.1089/ast.2006.0129 | |
| dc.relation.references | Grenfell et al., 2012 J.L. Grenfell, J.M. Grießmeier, P. von Paris, A.B.C. Patzer, H. Lammer, B. Stracke, S. Gebauer, F. Schreier, H. Rauer Response of atmospheric biomarkers to NO x-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars Astrobiology, 12 (12) (2012), pp. 1109-1122, 10.1089/ast.2011.0682 | |
| dc.relation.references | Harrison et al., 2015 R.G. Harrison, K. Nicoll, Y. Takahashi, Y. Yair Focus on high energy particles and atmospheric processes Environ. Res. Lett., 10 (10) (2015), Article 100201, 10.1088/1748-9326/10/10/100201 | |
| dc.relation.references | Holt and Benfer, Jr., 2000 B. Holt, R.A. Benfer, Jr. Estimating missing data: an iterative regression approach J. Hum. Evol., 39 (3) (2000), pp. 289-296, 10.1006/jhev.2000.0418 | |
| dc.relation.references | Jackman et al., 2005 C.H. Jackman, M.T. DeLand, G.J. Labow, E.L. Fleming, D.K. Weisenstein, M.K. Ko, M. Sinnhuber, J. Anderson, J.M. Russell The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere Adv. Space Res., 35 (3) (2005), pp. 445-450, 10.1016/j.asr.2004.09.006 | |
| dc.relation.references | Jackman et al., 2016 C.H. Jackman, D.R. Marsh, D.E. Kinnison, C.J. Mertens, E.L. Fleming Atmospheric changes caused by galactic cosmic rays over the period 1960–2010 Atmospheric Chem. Phys., 16 (9) (2016), pp. 5853-5866, 10.5194/acp-16-5853-2016 | |
| dc.relation.references | Jackman et al., 2007 C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, E.L. Fleming, G.J. Labow, C.E. Randall, M. Lopez-Puertas, B. Funke Short-and medium-term atmospheric effects of very large solar proton events Atmospheric Chem. Phys. Discuss., 7 (4) (2007), pp. 10543-10588, 10.5194/acpd-7-10543-2007 | |
| dc.relation.references | Jeong and Oh, 2020 J. Jeong, S. Oh Seasonal variation of cosmic ray intensity observed by the oulu neutron monitor J. Astron. Space Sci., 37 (3) (2020), pp. 165-170, 10.5140/JASS.2020.37.3.165 | |
| dc.relation.references | Kantelhardt et al., 2002 J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley Multifractal detrended fluctuation analysis of nonstationary time series Phys. A, 316 (1–4) (2002), pp. 87-114, 10.1016/S0378-4371(02)01383-3 | |
| dc.relation.references | Kirkby et al., 2011 J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation Nature, 476 (7361) (2011), pp. 429-433, 10.1038/nature10343 | |
| dc.relation.references | Konopka et al., 2007 P. Konopka, A. Engel, B. Funke, R. Müller, J.U. Grooß, G. Günther, T. Wetter, G. Stiller, T. von Clarmann, N. Glatthor, et al. Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens J. Geophys. Res.: Atmospheres, 112 (D5) (2007), 10.1029/2006JD007064 | |
| dc.relation.references | Maghrabi et al., 2015 A. Maghrabi, R. Alotaibi, M. Almutayri, M. Garawi Influence of the atmospheric mass on the high energy cosmic ray muons during a solar cycle Adv. Astron., 2015 (1) (2015), Article 939146, 10.1155/2015/939146 | |
| dc.relation.references | Maghrabi et al., 2023 A.H. Maghrabi, S.A. Alzahrani, A.S. Alruhaili The role of atmospheric pressure, temperature, and humidity on cosmic ray muons at a low latitude station Int. J. Astron. Astrophys., 13 (3) (2023), pp. 236-258, 10.4236/ijaa.2023.133014 | |
| dc.relation.references | Maliniemi et al., 2021 V. Maliniemi, H. Nesse Tyssøy, C. Smith-Johnsen, P. Arsenovic, D.R. Marsh Effects of enhanced downwelling of NO x on antarctic upper-stratospheric ozone in the 21st century Atmospheric Chem. Phys., 21 (14) (2021), pp. 11041-11052, 10.5194/acp-21-11041-2021 | |
| dc.relation.references | Marsh and Svensmark, 2000 N. Marsh, H. Svensmark Cosmic rays, clouds, and climate Space Sci. Rev., 94 (1) (2000), pp. 215-230, 10.1023/A:1026723423896 | |
| dc.relation.references | Matthes et al., 2017 K. Matthes, B. Funke, M.E. Andersson, L. Barnard, J. Beer, P. Charbonneau, M.A. Clilverd, T. Dudok de Wit, M. Haberreiter, A. Hendry, et al. Solar forcing for CMIP6 (v3. 2) Geosci. Model. Dev., 10 (6) (2017), pp. 2247-2302, 10.5194/gmd-10-2247-2017 | |
| dc.relation.references | Meng et al., 1997 Z. Meng, D. Dabdub, J.H. Seinfeld Chemical coupling between atmospheric ozone and particulate matter Science, 277 (5322) (1997), pp. 116-119, 10.1126/science.277.5322.116 | |
| dc.relation.references | Mielniczuk and Wojdyłło, 2007 J. Mielniczuk, P. Wojdyłło Estimation of hurst exponent revisited Comput. Statist. Data Anal., 51 (9) (2007), pp. 4510-4525, 10.1016/j.csda.2006.07.033 | |
| dc.relation.references | Miyahara et al., 2023 H. Miyahara, K. Kusano, R. Kataoka, S.-i. Shima, E. Touber Response of high-altitude clouds to the galactic cosmic ray cycles in tropical regions Front. Earth Sci., 11 (2023), Article 1157753, 10.3389/feart.2023.1157753 | |
| dc.relation.references | E. Molino-Minero-Re, F. García-Nocetti, H. Benítez-Pérez Application of a time-scale local hurst exponent analysis to time series Digit. Signal Process., 37 (2015), pp. 92-99, 10.1016/j.dsp.2014.11.007 | |
| dc.relation.references | Naik et al., 2013 V. Naik, A. Voulgarakis, A.M. Fiore, L.W. Horowitz, J.F. Lamarque, M. Lin, M.J. Prather, P. Young, D. Bergmann, P. Cameron-Smith, et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the atmospheric chemistry and climate model intercomparison project (ACCMIP) Atmospheric Chem. Phys., 13 (10) (2013), pp. 5277-5298, 10.5194/acp-13-5277-2013 | |
| dc.relation.references | Nikfalazar et al., 2020 S. Nikfalazar, C.H. Yeh, S. Bedingfield, H.A. Khorshidi Missing data imputation using decision trees and fuzzy clustering with iterative learning Knowl. Inf. Syst., 62 (6) (2020), pp. 2419-2437, 10.1007/s10115-019-01427-1 | |
| dc.relation.references | Oświȩcimka et al., 2014 P. Oświȩcimka, S. Drożdż, M. Forczek, S. Jadach, J. Kwapień Detrended cross-correlation analysis consistently extended to multifractality Phys. Rev. E, 89 (2) (2014), Article 023305, 10.1103/PhysRevE.89.023305 | |
| dc.relation.references | Pierce, 2017 J. Pierce Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment J. Geophys. Res.: Atmospheres, 122 (15) (2017), pp. 8051-8055, 10.1002/2017JD027475 | |
| dc.relation.references | Podobnik and Stanley, 2008 B. Podobnik, H.E. Stanley Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series Phys. Rev. Lett., 100 (8) (2008), Article 084102, 10.1103/PhysRevLett.100.084102 | |
| dc.relation.references | Portmann et al., 2012 R. Portmann, J. Daniel, A. Ravishankara Stratospheric ozone depletion due to nitrous oxide: influences of other gases Phil. Trans. R. Soc. B, 367 (1593) (2012), pp. 1256-1264, 10.1098/rstb.2011.0377 | |
| dc.relation.references | Prather and Hsu, 2010 M.J. Prather, J. Hsu Coupling of nitrous oxide and methane by global atmospheric chemistry Science, 330 (6006) (2010), pp. 952-954, 10.1126/science.1196285 | |
| dc.relation.references | Riádigos et al., 2022 I. Riádigos, D. González-Díaz, V. Pérez-Muñuzuri Revisiting the limits of atmospheric temperature retrieval from cosmic-ray measurements Earth Space Sci., 9 (3) (2022), 10.1029/2021EA001982 | |
| dc.relation.references | Satta et al., 2024 M. Satta, D. Catone, M.C. Castrovilli, F. Nicolanti, A. Cartoni Ionic route to atmospheric relevant HO2 and protonated formaldehyde from methanol cation and O2 Molecules, 29 (7) (2024), p. 1484, 10.3390/molecules29071484 | |
| dc.relation.references | Scheucher et al., 2018 M. Scheucher, J.L. Grenfell, F. Wunderlich, M. Godolt, F. Schreier, H. Rauer New insights into cosmic-ray-induced biosignature chemistry in earth-like atmospheres Astrophys. J., 863 (1) (2018), p. 6, 10.3847/1538-4357/aacf03 | |
| dc.relation.references | Schnadt et al., 2002 C. Schnadt, M. Dameris, M. Ponater, R. Hein, V. Grewe, B. Steil Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone Clim. Dyn., 18 (2002), pp. 501-517, 10.1007/s00382-001-0190-z | |
| dc.relation.references | Seinfeld and Pandis, 2016 J.H. Seinfeld, S.N. Pandis Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (third ed.), Wiley (2016) | |
| dc.relation.references | Sierra-Porta, 2022 D. Sierra-Porta On the fractal properties of cosmic rays and sun dynamics cross-correlations Astrophys. Space Sci., 367 (12) (2022), p. 116, 10.1007/s10509-022-04151-5 | |
| dc.relation.references | Sierra-Porta, 2025 D. Sierra-Porta Multifractal detrended cross-correlation coefficient for cosmic ray and sunspot time series J. Atmos. Sol.-Terr. Phys., 266 (2025), Article 106407, 10.1016/j.jastp.2024.106407 | |
| dc.relation.references | Sierra-Porta and Domínguez-Monterroza, 2022 D. Sierra-Porta, A.-R. Domínguez-Monterroza Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis Phys. A, 607 (2022), Article 128159, 10.1016/j.physa.2022.128159 | |
| dc.relation.references | Svensmark and Friis-Christensen, 1997 H. Svensmark, E. Friis-Christensen Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships J. Atmos. Sol.-Terr. Phys., 59 (11) (1997), pp. 1225-1232, 10.1016/S1364-6826(97)00001-1 | |
| dc.relation.references | Tabataba-Vakili et al., 2016 F. Tabataba-Vakili, J. Grenfell, J.-M. Grießmeier, H. Rauer Atmospheric effects of stellar cosmic rays on earth-like exoplanets orbiting M-dwarfs Astron. Astrophys., 585 (2016), p. A96, 10.1051/0004-6361/201425602 | |
| dc.relation.references | Tomassetti et al., 2022 N. Tomassetti, B. Bertucci, E. Fiandrini Temporal evolution and rigidity dependence of the solar modulation lag of galactic cosmic rays Phys. Rev. D, 106 (10) (2022), Article 103022, 10.1103/PhysRevD.106.103022 | |
| dc.relation.references | Utomo, 2017 Y. Utomo Correlation analysis of solar constant, solar activity and cosmic ray J. Phys.: Conf. Ser., 817 (1) (2017), Article 012045, 10.1088/1742-6596/817/1/012045 | |
| dc.relation.references | Varotsos et al., 2023a C. Varotsos, G. Golitsyn, M. Efstathiou, N. Sarlis A new method of nowcasting extreme cosmic ray events Remote. Sens. Lett., 14 (6) (2023), pp. 576-584, 10.1080/2150704X.2022.2057204 | |
| dc.relation.references | Varotsos et al., 2024 C. Varotsos, G. Golitsyn, Y. Mazei, N. Sarlis, Y. Xue, H. Mavromichalaki, M. Efstathiou On the observed time evolution of cosmic rays in a new time domain Acta Astronaut., 225 (2024), pp. 436-443, 10.1016/j.actaastro.2024.09.034 | |
| dc.relation.references | Varotsos et al., 2023b C. Varotsos, G. Golitsyn, Y. Xue, M. Efstathiou, N. Sarlis, T. Voronova On the relation between rain, clouds, and cosmic rays Remote. Sens. Lett., 14 (3) (2023), pp. 301-312, 10.1080/2150704X.2023.2190468 | |
| dc.relation.references | Zebende and da Silva Filho, 2018 G. Zebende, A. da Silva Filho Detrended multiple cross-correlation coefficient Phys. A, 510 (2018), pp. 91-97, 10.1016/j.physa.2018.06.119 | |
| dc.relation.references | Zhou, 2008 W.X. Zhou Multifractal detrended cross-correlation analysis for two nonstationary signals Phys. Rev. E—Statistical, Nonlinear, Soft Matter Phys., 77 (6) (2008), Article 066211, 10.1103/PhysRevE.77.066211 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos | |
| dc.subject.lemb | Rayos cósmicos -- Influencia en la atmósfera terrestre | |
| dc.subject.lemb | Cosmic rays -- Influence on the atmosphere | |
| dc.subject.lemb | Ionización atmosférica | |
| dc.subject.lemb | Atmospheric ionization | |
| dc.subject.lemb | Gases de efecto invernadero -- Modelos estadísticos | |
| dc.subject.lemb | Greenhouse gases -- Statistical models | |
| dc.subject.lemb | Multifractal analysis -- Applications in atmospheric sciences | |
| dc.subject.lemb | Análisis multifractal — Aplicaciones en ciencias atmosféricas | |
| dc.subject.lemb | Física heliosférica | |
| dc.subject.lemb | Heliospheric physics | |
| dc.subject.lemb | Modelos climáticos | |
| dc.subject.lemb | Climate models | |
| dc.subject.ocde | 1. Ciencias Naturales::1C. Ciencias físicas::1C03. Física de partículas y campos | |
| dc.subject.ocde | 1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía | |
| dc.subject.ods | ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos | |
| dc.subject.proposal | Galactic cosmic rays | |
| dc.subject.proposal | Methane | |
| dc.subject.proposal | Ozone | |
| dc.subject.proposal | Multifractal analysis | |
| dc.subject.proposal | Atmospheric ionisation | |
| dc.subject.proposal | Space weather | |
| dc.subject.proposal | Trace-gas variability | |
| dc.title | Scale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 996a607a-3eb1-4484-8978-ed736b9fc0b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 996a607a-3eb1-4484-8978-ed736b9fc0b7 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Scale_dependent_coupling_between_galactic_cosmic_rays_and_trace_gases_revealed_by_multifractal_analysis__JASTP_-4.pdf
- Tamaño:
- 932.88 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: