Publicación:
Scale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis

dc.contributor.authorSierra Porta, David
dc.contributor.researchgroupGrupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS
dc.contributor.seedbedsSemillero de Investigación en Astronomía y Ciencia de Datos
dc.date.accessioned2025-11-04T19:17:09Z
dc.date.issued2025-11-01
dc.descriptionContiene gráficos
dc.description.abstractGalactic cosmic rays (GCR) modulate atmospheric ionisation and may influence reactive greenhouse gases, yet linear correlations have proved inconclusive. We analyse 74 328 hourly observations (2016–2024) of pressure-corrected neutron-monitor counts and co-located CH and O mixing ratios from the high-alpine Jungfraujoch station using Multifractal Detrended Fluctuation Analysis (MFDFA) and its bivariate extension (MFDCCA). Cosmic rays exhibit a narrow, quasi-monofractal singularity spectrum (), consistent with heliospheric modulation as a single dominant driver, whereas O and CH display progressively broader spectra ( and 0.84). Cross-Hurst exponents exceed unity for small-to-moderate fluctuations, indicating super-persistent joint variability on 1–7 d (O) and 7–30 d (CH) horizons—time-scales compatible with HO/NO chemistry triggered by GCR ionisation. Quadratic fits to the cross-singularity spectra yield half-maximum widths of 0.39 (CH–GCR) and (O–GCR), quantifying a broader amplitude hierarchy for methane. Extreme gas anomalies, by contrast, show weak cross persistence, implicating dynamical intrusions rather than ionisation. Multifractal metrics thus expose a scale-selective GCR imprint masked in Pearson and Spearman statistics and suggest that incorporating GCR flux as a multiscale covariate could improve sub-monthly O/CH predictions. The approach provides a transferable framework for disentangling cosmic-ray forcing from chemical and dynamical controls in other trace-gas records.
dc.description.researchareaClima espacial y rayos cósmicos
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationD. Sierra-Porta, Scale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 277, 2025, 106661, ISSN 1364-6826, https://doi.org/10.1016/j.jastp.2025.106661.
dc.identifier.doihttps://doi.org/10.1016/j.jastp.2025.106661
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14269
dc.language.isoeng
dc.relation.referencesBianchi, S., 2020. fathon: A python package for a fast computation of detrendend fluctuation analysis and related algorithms. Journal of Open Source Software 5, 1828. doi:https://doi.org/10.21105/joss.01828.
dc.relation.referencesBrune, W., Miller, D., Thames, A., Allen, H., Apel, E., Blake, D., Bui, T., Commane, R., Crounse, J., Daube, B., et al., 2020. Exploring oxidation in the remote free troposphere: Insights from atmospheric tomography (atom). Journal of Geophysical Research: Atmospheres 125, e2019JD031685. doi:https://doi.org/10.1029/2019JD031685.
dc.relation.referencesCalisto, M., Usoskin, I., Rozanov, E., Peter, T., 2011. Influence of galactic cosmic rays on atmospheric compo sition and dynamics. Atmospheric Chemistry and Physics 11, 4547–4556. doi:https://doi.org/10.5194/ 503 acp-11-4547-2011.
dc.relation.referencesCarslaw, K., Harrison, R., Kirkby, J., 2002. Cosmic rays, clouds, and climate. science,1732–1737. doi:https: 505 //doi.org/10.1126/science.1076964.
dc.relation.referencesCatone, D., Castrovilli, M.C., Nicolanti, F., Satta, M., Cartoni, A., 2023. Formation of h 3 o+ and oh by co 2 and n 2 o trace gases in the atmospheric environment. Physical Chemistry Chemical Physics 25, 25619–25628. doi:https: //doi.org/10.1039/D3CP02427J.
dc.relation.referencesChristodoulakis et al., 2019 J. Christodoulakis, C. Varotsos, H. Mavromichalaki, M. Efstathiou, M. Gerontidou On the link between atmospheric cloud parameters and cosmic rays J. Atmos. Sol.-Terr. Phys., 189 (2019), pp. 98-106, 10.1016/j.jastp.2019.04.012
dc.relation.referencesDonnini, 2021 F. Donnini Cosmic ray nuclei: results from AMS-02 Phys. At. Nucl., 84 (6) (2021), pp. 956-965, 10.1134/S1063778821130081
dc.relation.referencesEllis, 2007 C. Ellis The sampling properties of hurst exponent estimates Phys. A, 375 (1) (2007), pp. 159-173, 10.1016/j.physa.2006.08.046
dc.relation.referencesFriis-Christensen and Svensmark, 1997 E. Friis-Christensen, H. Svensmark What do we really know about the sun-climate connection? Adv. Space Res., 20 (4–5) (1997), pp. 913-921, 10.1016/S0273-1177(97)00499-7
dc.relation.referencesGong et al., 2025 S. Gong, L. Duan, J. Zhao, X. Wei, J. Feng, Z. Li Temporal correlation between positive-charged cosmic ray flux and solar polar field variation: Insights from delayed modulation analysis Phys. Rev. D, 111 (8) (2025), Article 083050, 10.1103/PhysRevD.111.083050
dc.relation.referencesGorjão et al., 2022 L.R. Gorjão, G. Hassan, J. Kurths, D. Witthaut MFDFA: Efficient multifractal detrended fluctuation analysis in python Comput. Phys. Comm., 273 (2022), Article 108254, 10.1016/j.cpc.2021.108254
dc.relation.referencesGrenfell et al., 2007 J.L. Grenfell, J.M. Grießmeier, B. Patzer, H. Rauer, A. Segura, A. Stadelmann, B. Stracke, R. Titz, P. Von Paris Biomarker response to galactic cosmic ray-induced NO x and the methane greenhouse effect in the atmosphere of an earth-like planet orbiting an M dwarf star Astrobiology, 7 (1) (2007), pp. 208-221, 10.1089/ast.2006.0129
dc.relation.referencesGrenfell et al., 2012 J.L. Grenfell, J.M. Grießmeier, P. von Paris, A.B.C. Patzer, H. Lammer, B. Stracke, S. Gebauer, F. Schreier, H. Rauer Response of atmospheric biomarkers to NO x-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars Astrobiology, 12 (12) (2012), pp. 1109-1122, 10.1089/ast.2011.0682
dc.relation.referencesHarrison et al., 2015 R.G. Harrison, K. Nicoll, Y. Takahashi, Y. Yair Focus on high energy particles and atmospheric processes Environ. Res. Lett., 10 (10) (2015), Article 100201, 10.1088/1748-9326/10/10/100201
dc.relation.referencesHolt and Benfer, Jr., 2000 B. Holt, R.A. Benfer, Jr. Estimating missing data: an iterative regression approach J. Hum. Evol., 39 (3) (2000), pp. 289-296, 10.1006/jhev.2000.0418
dc.relation.referencesJackman et al., 2005 C.H. Jackman, M.T. DeLand, G.J. Labow, E.L. Fleming, D.K. Weisenstein, M.K. Ko, M. Sinnhuber, J. Anderson, J.M. Russell The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere Adv. Space Res., 35 (3) (2005), pp. 445-450, 10.1016/j.asr.2004.09.006
dc.relation.referencesJackman et al., 2016 C.H. Jackman, D.R. Marsh, D.E. Kinnison, C.J. Mertens, E.L. Fleming Atmospheric changes caused by galactic cosmic rays over the period 1960–2010 Atmospheric Chem. Phys., 16 (9) (2016), pp. 5853-5866, 10.5194/acp-16-5853-2016
dc.relation.referencesJackman et al., 2007 C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, E.L. Fleming, G.J. Labow, C.E. Randall, M. Lopez-Puertas, B. Funke Short-and medium-term atmospheric effects of very large solar proton events Atmospheric Chem. Phys. Discuss., 7 (4) (2007), pp. 10543-10588, 10.5194/acpd-7-10543-2007
dc.relation.referencesJeong and Oh, 2020 J. Jeong, S. Oh Seasonal variation of cosmic ray intensity observed by the oulu neutron monitor J. Astron. Space Sci., 37 (3) (2020), pp. 165-170, 10.5140/JASS.2020.37.3.165
dc.relation.referencesKantelhardt et al., 2002 J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley Multifractal detrended fluctuation analysis of nonstationary time series Phys. A, 316 (1–4) (2002), pp. 87-114, 10.1016/S0378-4371(02)01383-3
dc.relation.referencesKirkby et al., 2011 J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation Nature, 476 (7361) (2011), pp. 429-433, 10.1038/nature10343
dc.relation.referencesKonopka et al., 2007 P. Konopka, A. Engel, B. Funke, R. Müller, J.U. Grooß, G. Günther, T. Wetter, G. Stiller, T. von Clarmann, N. Glatthor, et al. Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens J. Geophys. Res.: Atmospheres, 112 (D5) (2007), 10.1029/2006JD007064
dc.relation.referencesMaghrabi et al., 2015 A. Maghrabi, R. Alotaibi, M. Almutayri, M. Garawi Influence of the atmospheric mass on the high energy cosmic ray muons during a solar cycle Adv. Astron., 2015 (1) (2015), Article 939146, 10.1155/2015/939146
dc.relation.referencesMaghrabi et al., 2023 A.H. Maghrabi, S.A. Alzahrani, A.S. Alruhaili The role of atmospheric pressure, temperature, and humidity on cosmic ray muons at a low latitude station Int. J. Astron. Astrophys., 13 (3) (2023), pp. 236-258, 10.4236/ijaa.2023.133014
dc.relation.referencesMaliniemi et al., 2021 V. Maliniemi, H. Nesse Tyssøy, C. Smith-Johnsen, P. Arsenovic, D.R. Marsh Effects of enhanced downwelling of NO x on antarctic upper-stratospheric ozone in the 21st century Atmospheric Chem. Phys., 21 (14) (2021), pp. 11041-11052, 10.5194/acp-21-11041-2021
dc.relation.referencesMarsh and Svensmark, 2000 N. Marsh, H. Svensmark Cosmic rays, clouds, and climate Space Sci. Rev., 94 (1) (2000), pp. 215-230, 10.1023/A:1026723423896
dc.relation.referencesMatthes et al., 2017 K. Matthes, B. Funke, M.E. Andersson, L. Barnard, J. Beer, P. Charbonneau, M.A. Clilverd, T. Dudok de Wit, M. Haberreiter, A. Hendry, et al. Solar forcing for CMIP6 (v3. 2) Geosci. Model. Dev., 10 (6) (2017), pp. 2247-2302, 10.5194/gmd-10-2247-2017
dc.relation.referencesMeng et al., 1997 Z. Meng, D. Dabdub, J.H. Seinfeld Chemical coupling between atmospheric ozone and particulate matter Science, 277 (5322) (1997), pp. 116-119, 10.1126/science.277.5322.116
dc.relation.referencesMielniczuk and Wojdyłło, 2007 J. Mielniczuk, P. Wojdyłło Estimation of hurst exponent revisited Comput. Statist. Data Anal., 51 (9) (2007), pp. 4510-4525, 10.1016/j.csda.2006.07.033
dc.relation.referencesMiyahara et al., 2023 H. Miyahara, K. Kusano, R. Kataoka, S.-i. Shima, E. Touber Response of high-altitude clouds to the galactic cosmic ray cycles in tropical regions Front. Earth Sci., 11 (2023), Article 1157753, 10.3389/feart.2023.1157753
dc.relation.referencesE. Molino-Minero-Re, F. García-Nocetti, H. Benítez-Pérez Application of a time-scale local hurst exponent analysis to time series Digit. Signal Process., 37 (2015), pp. 92-99, 10.1016/j.dsp.2014.11.007
dc.relation.referencesNaik et al., 2013 V. Naik, A. Voulgarakis, A.M. Fiore, L.W. Horowitz, J.F. Lamarque, M. Lin, M.J. Prather, P. Young, D. Bergmann, P. Cameron-Smith, et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the atmospheric chemistry and climate model intercomparison project (ACCMIP) Atmospheric Chem. Phys., 13 (10) (2013), pp. 5277-5298, 10.5194/acp-13-5277-2013
dc.relation.referencesNikfalazar et al., 2020 S. Nikfalazar, C.H. Yeh, S. Bedingfield, H.A. Khorshidi Missing data imputation using decision trees and fuzzy clustering with iterative learning Knowl. Inf. Syst., 62 (6) (2020), pp. 2419-2437, 10.1007/s10115-019-01427-1
dc.relation.referencesOświȩcimka et al., 2014 P. Oświȩcimka, S. Drożdż, M. Forczek, S. Jadach, J. Kwapień Detrended cross-correlation analysis consistently extended to multifractality Phys. Rev. E, 89 (2) (2014), Article 023305, 10.1103/PhysRevE.89.023305
dc.relation.referencesPierce, 2017 J. Pierce Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment J. Geophys. Res.: Atmospheres, 122 (15) (2017), pp. 8051-8055, 10.1002/2017JD027475
dc.relation.referencesPodobnik and Stanley, 2008 B. Podobnik, H.E. Stanley Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series Phys. Rev. Lett., 100 (8) (2008), Article 084102, 10.1103/PhysRevLett.100.084102
dc.relation.referencesPortmann et al., 2012 R. Portmann, J. Daniel, A. Ravishankara Stratospheric ozone depletion due to nitrous oxide: influences of other gases Phil. Trans. R. Soc. B, 367 (1593) (2012), pp. 1256-1264, 10.1098/rstb.2011.0377
dc.relation.referencesPrather and Hsu, 2010 M.J. Prather, J. Hsu Coupling of nitrous oxide and methane by global atmospheric chemistry Science, 330 (6006) (2010), pp. 952-954, 10.1126/science.1196285
dc.relation.referencesRiádigos et al., 2022 I. Riádigos, D. González-Díaz, V. Pérez-Muñuzuri Revisiting the limits of atmospheric temperature retrieval from cosmic-ray measurements Earth Space Sci., 9 (3) (2022), 10.1029/2021EA001982
dc.relation.referencesSatta et al., 2024 M. Satta, D. Catone, M.C. Castrovilli, F. Nicolanti, A. Cartoni Ionic route to atmospheric relevant HO2 and protonated formaldehyde from methanol cation and O2 Molecules, 29 (7) (2024), p. 1484, 10.3390/molecules29071484
dc.relation.referencesScheucher et al., 2018 M. Scheucher, J.L. Grenfell, F. Wunderlich, M. Godolt, F. Schreier, H. Rauer New insights into cosmic-ray-induced biosignature chemistry in earth-like atmospheres Astrophys. J., 863 (1) (2018), p. 6, 10.3847/1538-4357/aacf03
dc.relation.referencesSchnadt et al., 2002 C. Schnadt, M. Dameris, M. Ponater, R. Hein, V. Grewe, B. Steil Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone Clim. Dyn., 18 (2002), pp. 501-517, 10.1007/s00382-001-0190-z
dc.relation.referencesSeinfeld and Pandis, 2016 J.H. Seinfeld, S.N. Pandis Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (third ed.), Wiley (2016)
dc.relation.referencesSierra-Porta, 2022 D. Sierra-Porta On the fractal properties of cosmic rays and sun dynamics cross-correlations Astrophys. Space Sci., 367 (12) (2022), p. 116, 10.1007/s10509-022-04151-5
dc.relation.referencesSierra-Porta, 2025 D. Sierra-Porta Multifractal detrended cross-correlation coefficient for cosmic ray and sunspot time series J. Atmos. Sol.-Terr. Phys., 266 (2025), Article 106407, 10.1016/j.jastp.2024.106407
dc.relation.referencesSierra-Porta and Domínguez-Monterroza, 2022 D. Sierra-Porta, A.-R. Domínguez-Monterroza Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis Phys. A, 607 (2022), Article 128159, 10.1016/j.physa.2022.128159
dc.relation.referencesSvensmark and Friis-Christensen, 1997 H. Svensmark, E. Friis-Christensen Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships J. Atmos. Sol.-Terr. Phys., 59 (11) (1997), pp. 1225-1232, 10.1016/S1364-6826(97)00001-1
dc.relation.referencesTabataba-Vakili et al., 2016 F. Tabataba-Vakili, J. Grenfell, J.-M. Grießmeier, H. Rauer Atmospheric effects of stellar cosmic rays on earth-like exoplanets orbiting M-dwarfs Astron. Astrophys., 585 (2016), p. A96, 10.1051/0004-6361/201425602
dc.relation.referencesTomassetti et al., 2022 N. Tomassetti, B. Bertucci, E. Fiandrini Temporal evolution and rigidity dependence of the solar modulation lag of galactic cosmic rays Phys. Rev. D, 106 (10) (2022), Article 103022, 10.1103/PhysRevD.106.103022
dc.relation.referencesUtomo, 2017 Y. Utomo Correlation analysis of solar constant, solar activity and cosmic ray J. Phys.: Conf. Ser., 817 (1) (2017), Article 012045, 10.1088/1742-6596/817/1/012045
dc.relation.referencesVarotsos et al., 2023a C. Varotsos, G. Golitsyn, M. Efstathiou, N. Sarlis A new method of nowcasting extreme cosmic ray events Remote. Sens. Lett., 14 (6) (2023), pp. 576-584, 10.1080/2150704X.2022.2057204
dc.relation.referencesVarotsos et al., 2024 C. Varotsos, G. Golitsyn, Y. Mazei, N. Sarlis, Y. Xue, H. Mavromichalaki, M. Efstathiou On the observed time evolution of cosmic rays in a new time domain Acta Astronaut., 225 (2024), pp. 436-443, 10.1016/j.actaastro.2024.09.034
dc.relation.referencesVarotsos et al., 2023b C. Varotsos, G. Golitsyn, Y. Xue, M. Efstathiou, N. Sarlis, T. Voronova On the relation between rain, clouds, and cosmic rays Remote. Sens. Lett., 14 (3) (2023), pp. 301-312, 10.1080/2150704X.2023.2190468
dc.relation.referencesZebende and da Silva Filho, 2018 G. Zebende, A. da Silva Filho Detrended multiple cross-correlation coefficient Phys. A, 510 (2018), pp. 91-97, 10.1016/j.physa.2018.06.119
dc.relation.referencesZhou, 2008 W.X. Zhou Multifractal detrended cross-correlation analysis for two nonstationary signals Phys. Rev. E—Statistical, Nonlinear, Soft Matter Phys., 77 (6) (2008), Article 066211, 10.1103/PhysRevE.77.066211
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
dc.subject.lembRayos cósmicos -- Influencia en la atmósfera terrestre
dc.subject.lembCosmic rays -- Influence on the atmosphere
dc.subject.lembIonización atmosférica
dc.subject.lembAtmospheric ionization
dc.subject.lembGases de efecto invernadero -- Modelos estadísticos
dc.subject.lembGreenhouse gases -- Statistical models
dc.subject.lembMultifractal analysis -- Applications in atmospheric sciences
dc.subject.lembAnálisis multifractal — Aplicaciones en ciencias atmosféricas
dc.subject.lembFísica heliosférica
dc.subject.lembHeliospheric physics
dc.subject.lembModelos climáticos
dc.subject.lembClimate models
dc.subject.ocde1. Ciencias Naturales::1C. Ciencias físicas::1C03. Física de partículas y campos
dc.subject.ocde1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía
dc.subject.odsODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
dc.subject.proposalGalactic cosmic rays
dc.subject.proposalMethane
dc.subject.proposalOzone
dc.subject.proposalMultifractal analysis
dc.subject.proposalAtmospheric ionisation
dc.subject.proposalSpace weather
dc.subject.proposalTrace-gas variability
dc.titleScale-dependent coupling between galactic cosmic rays and trace gases revealed by multifractal analysis
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication996a607a-3eb1-4484-8978-ed736b9fc0b7
relation.isAuthorOfPublication.latestForDiscovery996a607a-3eb1-4484-8978-ed736b9fc0b7

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Scale_dependent_coupling_between_galactic_cosmic_rays_and_trace_gases_revealed_by_multifractal_analysis__JASTP_-4.pdf
Tamaño:
932.88 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: