Publicación:
The effect of ph on aniline removal from water using hydrophobic and ion-exchange membranes

datacite.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorFilian, Karla
dc.contributor.authorMendez-Ruiz, Jonathan
dc.contributor.authorGarces, Daniel
dc.contributor.authorReveychuk, Kateryna
dc.contributor.authorMa, Lingshan
dc.contributor.authorMelendez, Jesus R.
dc.contributor.authorCornelissen, Emile
dc.contributor.authorValverde-Armas, Priscila E.
dc.contributor.authorGutierrez, Leo
dc.contributor.authorDíaz Mendoza, Claudia Patricia
dc.date.accessioned2025-04-03T21:37:45Z
dc.date.issued2025-02-14
dc.date.submitted2025-03-09
dc.descriptionContiene gráficos, tablas
dc.description.abstractThe presence of aniline, a toxic aromatic amine, has been recorded in different industrial wastewaters. This study aims to investigate the transport of charged and neutral aniline species in aqueous solutions through hydrophobic and ion-exchange membranes (IEMs). Hydrophobic polyoctylmethylsiloxane (POMS) and polydimethylsiloxane (PDMS) membranes and cationic (CEMs) and anionic (AEMs) exchange membranes were tested using diffusion cells and electrodialysis (ED). Diffusion experiments showed that neutral aniline removal reached 90% with POMS and 100% with PDMS due to the concentration gradient between feed (pH = 10) and receiving (pH = 3) solutions. For IEMs, neutral aniline exhibited a faster transport than charged species, with neutral-to-charged transport ratios of 6.6:1 for AEMs and 3.2:1 for CEMs, type I. During ED experiments, an external electric potential increased the charged aniline transport, achieving higher initial fluxes (124.7 mmol·m2·h−1 at pH 4) compared to neutral aniline (43.6 and 53.2 mmol·m2·h−1 for AEMs and CEMs, type I). ED also demonstrated that charged aniline can be removed up to 97% using IEMs. These findings demonstrate the effectiveness of hydrophobic and IEMs in removing aniline, providing insights into its transport mechanism, contributing to the optimization of membrane technologies in treating industrial wastewater effluents, and environmental sustainability.
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationFilian, K., Mendez-Ruiz, J. I., Garces, D., Reveychuk, K., Ma, L., Melendez, J. R., ... & Gutierrez, L. (2025). The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes. Water, 17(4), 547.
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13261
dc.identifier.urlhttps://www.mdpi.com/2073-4441/17/4/547
dc.language.isoeng
dc.publisher.disciplineIngeniería Ambiental
dc.publisher.placeCartagena de Indias
dc.publisher.sedeCampus Tecnológico
dc.relation.referencesFu, H.-Y.; Zhang, Z.-B.; Chai, T.; Huang, G.-H.; Yu, S.-J.; Liu, Z.; Gao, P.-F. Study of the removal of aniline from wastewater via MEUF using mixed surfactants. Water 2017, 9, 365.
dc.relation.referencesKortenkamp, A.; Faust, M. Regulate to reduce chemical mixture risk. Science 2018, 361, 224–226.
dc.relation.referencesDoraghi, F.; Kalooei, Y.M.; Darban, N.M.Z.; Larijani, B.; Mahdavi, M. Para-Selective C-H Functionalization of Anilines: A Review. J. Organomet. Chem. 2024, 1019, 123313
dc.relation.referencesChoi, G.; Kuiper, J.R.; Bennett, D.H.; Barrett, E.S.; Bastain, T.M.; Breton, C.V.; Chinthakindi, S.; Dunlop, A.L.; Farzan, S.F.; Herbstman, J.B.; et al. Exposure to melamine and its derivatives and aromatic amines among pregnant women in the United States: The ECHO Program. Chemosphere 2022, 307, 135599.
dc.relation.referencesLi, X.; Jin, X.; Zhao, N.; Angelidaki, I.; Zhang, Y. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res. 2017, 119, 67–72
dc.relation.referencesChen, H.; Sun, C.; Liu, R.; Yuan, M.; Mao, Z.; Wang, Q.; Zhou, H.; Cheng, H.; Zhan, W.; Wang, Y. Enrichment and domestication of a microbial consortium for degrading aniline. J. Water Process Eng. 2021, 42, 102108.
dc.relation.referencesATSDR. Medical Management Guidelines for Aniline. 2007. Available online: https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=448&toxid=79#bookmark01 (accessed on 6 March 2024).
dc.relation.referencesSzczepanik, B.; Słomkiewicz, P. Photodegradation of aniline in water in the presence of chemically activated halloysite. Appl. Clay Sci. 2016, 124, 31–38
dc.relation.referencesHebrant, M. Hawley’s Condensed Chemical Dictionary. By MD Larrañaga, RJ Lewis Sr & RA Lewis. Wiley, 2016. Hardback, Pp. XIII+ 1547. Price GBP 96.78. ISBN 9781118135150. Acta Crystallogr. Sect. C Struct. Chem. 2016, 72, 765.
dc.relation.referencesIMARC Group. Aniline Market Report by Technology (Vapor Phase Process, Liquid Phase Process), Application (Methylenediphenyldiisocyanate (MDI) and Others), End-Use Industry (Insulation, Rubber Products, Consumer Goods, Transportation, Packaging, Agriculture and Others) and Region 2024–2032. 2023. Available online: https://www.imarcgroup.com/report/en/aniline-market (accessed on 11 October 2024)
dc.relation.referencesChen, Y.; Zhang, J.; Zhu, X.; Wang, Y.; Chen, J.; Sui, B.; Teng, H.H. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. Ecotoxicol. Environ. Saf. 2023, 265, 115509
dc.relation.referencesLi, P.; Shi, J.; Gao, H. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks. Chem. Ind. Eng. Prog. 2022, 41, 2753.
dc.relation.referencesSheng, J.; Xu, J.; Qin, B.; Jiang, H. Three-dimensional flower-like magnetic CoFe-LDHs/CoFe2O4 composites activating peroxymonosulfate for high efficient degradation of aniline. J. Environ. Manag. 2022, 310, 114693.
dc.relation.referencesCui, Y.; Liu, X.-Y.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Res. 2016, 91, 104–114.
dc.relation.referencesZhu, J.; Yao, J.; Cao, Y.; Pang, W.; Knudsen, T.Š.; Liu, J. Degradation of aniline via microbial treated post Fe (II) or Co (II)/PMS advanced oxidation processes. Sep. Purif. Technol. 2025, 359, 130809.
dc.relation.referencesTravis, A.S. Poisoned Groundwater and Contaminated Soil: The Tribulations and Trial of the First Major Manufacturer of Aniline Dyes in Basel. Environ. Hist. 1997, 2, 343–365
dc.relation.referencesZhang, C.; Chen, H.; Xue, G.; Liu, Y.; Chen, S.; Jia, C. A critical review of the aniline transformation fate in azo dye wastewater treatment. J. Clean. Prod. 2021, 321, 128971.
dc.relation.referencesBasiri, H.; Nourmoradi, H.; Moghadam, F.M.; Moghadam, K.F.; Mohammadian, J.; Khaniabadi, Y.O. Removal of aniline as a health-toxic substance from polluted water by aloe vera waste-based activated carbon. Der Pharma Chem. 2015, 7, 149–155.
dc.relation.referencesBose, R.S.; Dey, S.; Saha, S.; Ghosh, C.K.; Chaudhuri, M.G. Enhanced removal of dissolved aniline from water under combined system of nano zero-valent iron and Pseudomonas putida. Sustain. Water Resour. Manag. 2016, 2, 143–159.
dc.relation.referencesGürten, A.A.; Uçan, S.; Özler, M.A.; Ayar, A. Removal of aniline from aqueous solution by PVC-CDAE ligand-exchanger. J. Hazard. Mater. 2005, 120, 81–87
dc.relation.referencesMatsushita, M.; Kuramitz, H.; Tanaka, S. Electrochemical oxidation for low concentration of aniline in neutral pH medium: Application to the removal of aniline based on the electrochemical polymerization on a carbon FIBER. Environ. Sci. Technol. 2005, 39, 3805–3810.
dc.relation.referencesJiang, Y.; Shang, Y.; Zhou, J.; Yang, K.; Wang, H. Characterization and biodegradation potential of an aniline-degrading strain of Pseudomonas JA1 at low temperature. Desalination Water Treat. 2016, 57, 25011–25017.
dc.relation.referencesLi, X.; Shao, D.; Xu, H.; Lv, W.; Yan, W. Fabrication of a stable Ti/TiOxHy/Sb− SnO2 anode for aniline degradation in different electrolytes. Chem. Eng. J. 2016, 285, 1–10.
dc.relation.referencesHaixia, W.; Zhi, F.; Yanhua, X. Degradation of aniline wastewater using dielectric barrier discharges at atmospheric pressure. Plasma Sci. Technol. 2015, 17, 228
dc.relation.referencesRayaroth, M.P.; Boczkaj, G.; Aubry, O.; Aravind, U.K.; Aravindakumar, C.T. Advanced oxidation processes for degradation of water pollutants—Ambivalent impact of carbonate species: A review. Water 2023, 15, 1615.
dc.relation.referencesUman, A.E.; Bair, R.A.; Yeh, D.H. Direct membrane filtration of wastewater: A comparison between real and synthetic Wastewater. Water 2024, 16, 405.
dc.relation.referencesMen, Y.; Li, Z.; Zhu, L.; Wang, X.; Cheng, S.; Lyu, Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. Sci. Total Environ. 2023, 869, 161775.
dc.relation.referencesSugiyama, T.; Ito, Y.; Hafuka, A.; Kimura, K. Efficient direct membrane filtration (DMF) of municipal wastewater for carbon recovery: Application of a simple pretreatment and selection of an appropriate membrane pore size. Water Res. 2022, 221, 118810.
dc.relation.referencesFerreira, F.C.; Han, S.; Livingston, A.G. Recovery of aniline from aqueous solution using the membrane aromatic recovery system (MARS). Ind. Eng. Chem. Res. 2002, 41, 2766–2774.
dc.relation.referencesHan, S.; Ferreira, F.C.; Livingston, A. Membrane aromatic recovery system (MARS)—A new membrane process for the recovery of phenols from wastewaters. J. Membr. Sci. 2001, 188, 219–233.
dc.relation.referencesSawai, J.; Ito, N.; Minami, T.; Kikuchi, M. Separation of low volatile organic compounds, phenol and aniline derivatives, from aqueous solutions using silicone rubber membrane. J. Membr. Sci. 2005, 252, 1–7.
dc.relation.referencesPark, J.-S.; Choi, J.-H.; Woo, J.-J.; Moon, S.-H. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 2006, 300, 655–662.
dc.relation.referencesXu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29
dc.relation.referencesGong, Y.; Wang, X.-L.; Li-Xin, Y. Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute. Desalination 2005, 172, 157–172.
dc.relation.referencesVanoppen, M.; Stoffels, G.; Ma, L.; De Meyer, E.; Schoutteten, K.; Vanhaecke, L.; Verliefde, A. Separation of organics and salts with ion-exchange membranes: Effect of matrix and organics. In Proceedings of the 2017 Membrane Technology Conference & Exposition, Long Beach, CA, USA, 13–17 February 2017.
dc.relation.referencesMa, L.; Roman, M.; Alhadidi, A.; Jia, M.; Martini, F.; Xue, Y.; Verliefde, A.; Gutierrez, L.; Cornelissen, E. Fate of organic micropollutants during brackish water desalination for drinking water production in decentralized capacitive electrodialysis. Water Res. 2023, 245, 120625.
dc.relation.referencesMa, L.; Gutierrez, L.; Vanoppen, M.; Lorenz, D.N.; Aubry, C.; Verliefde, A. Transport of uncharged organics in ion-exchange membranes: Experimental validation of the solution-diffusion model. J. Membr. Sci. 2018, 564, 773–781
dc.relation.referencesMa, L.; Gutierrez, L.; Verbeke, R.; D’Haese, A.; Waqas, M.; Dickmann, M.; Helm, R.; Vankelecom, I.; Verliefde, A.; Cornelissen, E. Transport of organic solutes in ion-exchange membranes: Mechanisms and influence of solvent ionic composition. Water Res. 2021, 190, 116756.
dc.relation.referencesVanoppen, M.; Bakelants, A.F.; Gaublomme, D.; Schoutteten, K.V.; Bussche, J.V.; Vanhaecke, L.; Verliefde, A.R. Properties governing the transport of trace organic contaminants through Ion-exchange membranes. Environ. Sci. Technol. 2015, 49, 489–497.
dc.relation.referencesSchnackenberg, L.K.; Beger, R.D. Whole-Molecule Calculation of Log P Based on Molar Volume, Hydrogen Bonds, and Simulated 13C NMR Spectra. J. Chem. Inf. Model. 2005, 45, 360–365.
dc.relation.referencesRen, Z.; Zhu, X.; Liu, W.; Sun, W.; Zhang, W.; Liu, J. Removal of aniline from wastewater using hollow fiber renewal liquid membrane. Chin. J. Chem. Eng. 2014, 22, 1187–1192.
dc.relation.referencesHu, L.; Cheng, J.; Li, Y.; Liu, J.; Zhou, J.; Cen, K. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes. Appl. Surf. Sci. 2017, 413, 27–34.
dc.relation.referencesBorges, F.; Balmann, H.R.-D.; Guardani, R. Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis. J. Membr. Sci. 2008, 325, 130–138.
dc.relation.referencesRoman, M.; Roman, P.; Verbeke, R.; Gutierrez, L.; Vanoppen, M.; Dickmann, M.; Egger, W.; Vankelecom, I.; Post, J.; Cornelissen, E.; et al. Non-steady diffusion and adsorption of organic micropollutants in ion-exchange membranes: Effect of the membrane thickness. iScience 2021, 24, 102095. [
dc.relation.referencesNunes, S.P.; Peinemann, K.-V. Membrane Technology: In the Chemical Industry; John Wiley & Sons: Hoboken, NJ, USA, 2006.
dc.relation.referencesPärnamäe, R.; Mareev, S.; Nikonenko, V.; Melnikov, S.; Sheldeshov, N.; Zabolotskii, V.; Hamelers, H.V.M.; Tedesco, M. Bipolar membranes: A review on principles, latest developments, and applications. J. Membr. Sci. 2021, 617, 118538.
dc.relation.referencesRoman, M.; Gutierrez, L.; Van Dijk, L.H.; Vanoppen, M.; Post, J.W.; Wols, B.A.; Cornelissen, E.R.; Verliefde, A.R. Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Sep. Purif. Technol. 2020, 252, 117487.
dc.relation.referencesChoi, J.H.; Lee, H.J.; Moon, S.-H. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J. Colloid Interface Sci. 2001, 238, 188–195.
dc.relation.referencesKipling, J. Adsorption from Solutions of Non-Electrolytes; Academic Press: Cambridge, MA, USA, 2013.
dc.relation.referencesMikhaylin, S.; Bazinet, L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 2016, 229, 34–56.
dc.relation.referencesFedotova, M.V.; Kruchinin, S.E. The hydration of aniline and benzoic acid: Analysis of radial and spatial distribution functions. J. Mol. Liq. 2013, 179, 27–33.
dc.rightsCC0 1.0 Universalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.sourceWater
dc.subject.lembAniline
dc.subject.lembHydrophobic membranes
dc.subject.lembElectrical gradient
dc.subject.lembIon-exchange membranes
dc.subject.proposalAniline
dc.subject.proposalHydrophobic surfaces
dc.subject.proposalIon exchange resins
dc.titleThe effect of ph on aniline removal from water using hydrophobic and ion-exchange membranes
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
relation.isAuthorOfPublicationeee59a8f-a66e-4e21-8506-5479f9a90214
relation.isAuthorOfPublication.latestForDiscoveryeee59a8f-a66e-4e21-8506-5479f9a90214

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
WATER.pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.14 KB
Formato:
Item-specific license agreed upon to submission
Descripción: