Publicación: An analytical model for the prediction of emptying processes in single water pipelines
| dc.contributor.author | Payares Guevara, Carlos Rafael | |
| dc.contributor.author | Patiño Vanegas, Alberto | |
| dc.contributor.author | Pereira Batista, Enrique | |
| dc.contributor.author | Fuertes Miquel, Vicente S. | |
| dc.contributor.author | Coronado Hernández, Óscar Enrique | |
| dc.contributor.researchgroup | Grupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS | |
| dc.date.accessioned | 2025-05-27T15:47:03Z | |
| dc.date.issued | 2025-05-26 | |
| dc.description | Incluye ilustraciones, gráficos | spa |
| dc.description.abstract | Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air pocket pressure, water column length, and water velocity during drainage operations in a pipeline with an entrapped air pocket and a closed upstream end. The existing system of three differential equations is reduced to two first-order nonlinear differential equations, enabling a rigorous analysis of the existence and uniqueness of solutions. The system is then further reduced to a single second-order nonlinear ordinary differential equation (ODE), providing an intuitive framework for examining the physical behaviour of the hydraulic and thermodynamic variables. Furthermore, through a change of variables, the second-order ODE is transformed into a first-order linear ODE, facilitating the derivation of an analytical solution. The analytical solution is validated by comparing it with a numerical solution. Additionally, a practical application demonstrates the effectiveness of the developed tool in predicting the extreme pressure values in the air pocket during the water drainage process in a pipe, within a controlled environment. | eng |
| dc.description.researcharea | Acústica y ultrasonido | |
| dc.format.extent | 18 | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Payares Guevara , C.R.; Patiño-Vanegas, A.; Pereira-Batista, E.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines. Appl. Sci. 2025, 15, 6000. https://doi.org/10.3390/app15116000 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/13677 | |
| dc.identifier.url | https://www.mdpi.com/2076-3417/15/11/6000 | |
| dc.language.iso | eng | |
| dc.relation.references | American Water Works Association. Air-Release, Air/Vacuum, and Combination Air Valves: M51; American Water Works Association: Denver, CO, USA, 2001. | |
| dc.relation.references | Fontana, N.; Galdiero, E.; Giugni, M. Pressure surges caused by air release in water pipelines. J. Hydraul. Res. 2016, 54, 461–472. | |
| dc.relation.references | Wang, J.; Vasconcelos, J.G. Investigation of manhole cover displacement during rapid filling of stormwater systems. J. Hydraul. Eng. 2020, 146, 04020022 | |
| dc.relation.references | Zhou, L.; Lu, Y.; Karney, B.; Wu, G.; Elong, A.; Huang, K. Energy dissipation in a rapid filling vertical pipe with trapped air. J. Hydraul. Res. 2023, 61, 120–132. | |
| dc.relation.references | Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2019, 57, 318–326. https://doi.org/10.1080/00221686.2018.14 92465. | |
| dc.relation.references | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Saba, M.; Ramos, H.M. Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures. Appl. Sci. 2025, 15, 2643. | |
| dc.relation.references | Perez-Pulido, R.Y.; Rokhzadi, A.; Fuamba, M. Experimental Investigation of the Emptying Process and Air Cavity Dynamic in Pipelines. J. Irrig. Drain. Eng. 2022, 148, 04022040. | |
| dc.relation.references | Tasca, E.; Karney, B.; Fuertes-Miquel, V.S.; Dalfré Filho, J.G.; Luvizotto, E., Jr. The crucial importance of air valve characterization to the transient response of pipeline systems. Water 2022, 14, 2590. | |
| dc.relation.references | Tijsseling, A.S.; Hou, Q.; Bozku¸s, Z. Rapid liquid filling of a pipe with venting entrapped gas: Analytical and numerical solutions. J. Press. Vessel Technol. 2019, 141, 041301. | |
| dc.relation.references | Tijsseling, A.S.; Hou, Q.; Bozku¸s, Z.; Laanearu, J. Improved one-dimensional models for rapid emptying and filling of pipelines. J. Press. Vessel Technol. 2016, 138, 031301 | |
| dc.relation.references | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves. Water 2017, 9, 98. | |
| dc.relation.references | Bonilla, C.; Brentan, B.; Montalvo, I.; Ayala-Cabrera, D.; Izquierdo, J. Digitalization of Water Distribution Systems in Small Cities, a Tool for Verification and Hydraulic Analysis: A Case Study of Pamplona, Colombia. Water 2023, 15, 3824 | |
| dc.relation.references | Conejos Fuertes, P.; Martínez Alzamora, F.; Hervás Carot, M.; Alonso Campos, J. Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water J. 2020, 17, 704–713 | |
| dc.relation.references | Ramos, H.M.; Kuriqi, A.; Coronado-Hernández, O.E.; López-Jiménez, P.A.; and, M.P.S. Are digital twins improving urban-water systems efficiency and sustainable development goals? Urban Water J. 2024, 21, 1164–1175. https://doi.org/10.1080/1573062X.20 23.2180396. | |
| dc.relation.references | Berglund, E.Z.; Shafiee, M.E.; Xing, L.; Wen, J. Digital Twins for Water Distribution Systems. J. Water Resour. Plan. Manag. 2023, 149, 02523001. https://doi.org/10.1061/JWRMD5.WRENG-5786 | |
| dc.relation.references | . Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129 | |
| dc.relation.references | Chen, X.; Hou, Q.; Laanearu, J.; Tijsseling, A.S. Experimental data on filling and emptying of a large-scale pipeline. Sci. Data 2024, 11, 603. | |
| dc.relation.references | Singh, A.; Maheshwari, A.; Singh, S. Digital Twin Framework for Leakages Detection in Large-Scale Water Distribution Systems: A Case Study of IIT-Jodhpur Campus. IFAC-PapersOnLine 2024, 57, 280–285 | |
| dc.relation.references | Izquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.L.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590. | |
| dc.relation.references | Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckovi´c, S.; Hou, Q.; Van’t Westende, J. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100. | |
| dc.relation.references | Liou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539. | |
| dc.relation.references | Zhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959. | |
| dc.relation.references | Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. https://doi.org/10.1201/9780429492563. | |
| dc.relation.references | Apostol, T.M. Calculus. Vol. I: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed.; Blaisdell Publishing Co. [Ginn and Co.]: Waltham, MA, USA; Toronto, ON, Canada; London, UK, 1967. | |
| dc.relation.references | Paris, R.B. Incomplete gamma and related functions. In NIST Handbook of Mathematical Functions; U.S. Department of Commerce: Washington, DC, USA, 2010; pp. 175–192. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.subject.lemb | Water-pipes -- Hydraulics | |
| dc.subject.lemb | Air entrainment | |
| dc.subject.lemb | Pipe failures -- Prevention | |
| dc.subject.lemb | Differential equations, Nonlinear -- Applications | |
| dc.subject.lemb | Fluid dynamics -- Mathematical models | |
| dc.subject.lemb | Hydraulic transients | |
| dc.subject.lemb | Thermodynamics -- Mathematical models | |
| dc.subject.lemb | Water distribution systems -- Simulation methods | |
| dc.subject.lemb | Pipeline hydraulics -- Mathematical models | |
| dc.subject.ods | ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | |
| dc.subject.proposal | Nonlinear differential equations | eng |
| dc.subject.proposal | Pipeline drainage | eng |
| dc.subject.proposal | Pressure oscillations | eng |
| dc.title | An analytical model for the prediction of emptying processes in single water pipelines | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | cc7851f9-f447-40ad-a845-07f1d1c8839f | |
| relation.isAuthorOfPublication | 276cfc78-a984-49e2-a962-a3ed47c35f62 | |
| relation.isAuthorOfPublication | 8a4184b7-6478-40b3-8f49-aa2edb1e2bef | |
| relation.isAuthorOfPublication | 482051d5-f72e-4f5c-ab50-931342cd5b83 | |
| relation.isAuthorOfPublication.latestForDiscovery | cc7851f9-f447-40ad-a845-07f1d1c8839f |