Publicación:
An analytical model for the prediction of emptying processes in single water pipelines

dc.contributor.authorPayares Guevara, Carlos Rafael
dc.contributor.authorPatiño Vanegas, Alberto
dc.contributor.authorPereira Batista, Enrique
dc.contributor.authorFuertes Miquel, Vicente S.
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.researchgroupGrupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS
dc.date.accessioned2025-05-27T15:47:03Z
dc.date.issued2025-05-26
dc.descriptionIncluye ilustraciones, gráficosspa
dc.description.abstractAir pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air pocket pressure, water column length, and water velocity during drainage operations in a pipeline with an entrapped air pocket and a closed upstream end. The existing system of three differential equations is reduced to two first-order nonlinear differential equations, enabling a rigorous analysis of the existence and uniqueness of solutions. The system is then further reduced to a single second-order nonlinear ordinary differential equation (ODE), providing an intuitive framework for examining the physical behaviour of the hydraulic and thermodynamic variables. Furthermore, through a change of variables, the second-order ODE is transformed into a first-order linear ODE, facilitating the derivation of an analytical solution. The analytical solution is validated by comparing it with a numerical solution. Additionally, a practical application demonstrates the effectiveness of the developed tool in predicting the extreme pressure values in the air pocket during the water drainage process in a pipe, within a controlled environment.eng
dc.description.researchareaAcústica y ultrasonido
dc.format.extent18
dc.format.mimetypeapplication/pdf
dc.identifier.citationPayares Guevara , C.R.; Patiño-Vanegas, A.; Pereira-Batista, E.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines. Appl. Sci. 2025, 15, 6000. https://doi.org/10.3390/app15116000
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13677
dc.identifier.urlhttps://www.mdpi.com/2076-3417/15/11/6000
dc.language.isoeng
dc.relation.referencesAmerican Water Works Association. Air-Release, Air/Vacuum, and Combination Air Valves: M51; American Water Works Association: Denver, CO, USA, 2001.
dc.relation.referencesFontana, N.; Galdiero, E.; Giugni, M. Pressure surges caused by air release in water pipelines. J. Hydraul. Res. 2016, 54, 461–472.
dc.relation.referencesWang, J.; Vasconcelos, J.G. Investigation of manhole cover displacement during rapid filling of stormwater systems. J. Hydraul. Eng. 2020, 146, 04020022
dc.relation.referencesZhou, L.; Lu, Y.; Karney, B.; Wu, G.; Elong, A.; Huang, K. Energy dissipation in a rapid filling vertical pipe with trapped air. J. Hydraul. Res. 2023, 61, 120–132.
dc.relation.referencesFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2019, 57, 318–326. https://doi.org/10.1080/00221686.2018.14 92465.
dc.relation.referencesPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Saba, M.; Ramos, H.M. Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures. Appl. Sci. 2025, 15, 2643.
dc.relation.referencesPerez-Pulido, R.Y.; Rokhzadi, A.; Fuamba, M. Experimental Investigation of the Emptying Process and Air Cavity Dynamic in Pipelines. J. Irrig. Drain. Eng. 2022, 148, 04022040.
dc.relation.referencesTasca, E.; Karney, B.; Fuertes-Miquel, V.S.; Dalfré Filho, J.G.; Luvizotto, E., Jr. The crucial importance of air valve characterization to the transient response of pipeline systems. Water 2022, 14, 2590.
dc.relation.referencesTijsseling, A.S.; Hou, Q.; Bozku¸s, Z. Rapid liquid filling of a pipe with venting entrapped gas: Analytical and numerical solutions. J. Press. Vessel Technol. 2019, 141, 041301.
dc.relation.referencesTijsseling, A.S.; Hou, Q.; Bozku¸s, Z.; Laanearu, J. Improved one-dimensional models for rapid emptying and filling of pipelines. J. Press. Vessel Technol. 2016, 138, 031301
dc.relation.referencesCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves. Water 2017, 9, 98.
dc.relation.referencesBonilla, C.; Brentan, B.; Montalvo, I.; Ayala-Cabrera, D.; Izquierdo, J. Digitalization of Water Distribution Systems in Small Cities, a Tool for Verification and Hydraulic Analysis: A Case Study of Pamplona, Colombia. Water 2023, 15, 3824
dc.relation.referencesConejos Fuertes, P.; Martínez Alzamora, F.; Hervás Carot, M.; Alonso Campos, J. Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water J. 2020, 17, 704–713
dc.relation.referencesRamos, H.M.; Kuriqi, A.; Coronado-Hernández, O.E.; López-Jiménez, P.A.; and, M.P.S. Are digital twins improving urban-water systems efficiency and sustainable development goals? Urban Water J. 2024, 21, 1164–1175. https://doi.org/10.1080/1573062X.20 23.2180396.
dc.relation.referencesBerglund, E.Z.; Shafiee, M.E.; Xing, L.; Wen, J. Digital Twins for Water Distribution Systems. J. Water Resour. Plan. Manag. 2023, 149, 02523001. https://doi.org/10.1061/JWRMD5.WRENG-5786
dc.relation.references. Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129
dc.relation.referencesChen, X.; Hou, Q.; Laanearu, J.; Tijsseling, A.S. Experimental data on filling and emptying of a large-scale pipeline. Sci. Data 2024, 11, 603.
dc.relation.referencesSingh, A.; Maheshwari, A.; Singh, S. Digital Twin Framework for Leakages Detection in Large-Scale Water Distribution Systems: A Case Study of IIT-Jodhpur Campus. IFAC-PapersOnLine 2024, 57, 280–285
dc.relation.referencesIzquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.L.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590.
dc.relation.referencesLaanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckovi´c, S.; Hou, Q.; Van’t Westende, J. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100.
dc.relation.referencesLiou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539.
dc.relation.referencesZhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959.
dc.relation.referencesStrogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. https://doi.org/10.1201/9780429492563.
dc.relation.referencesApostol, T.M. Calculus. Vol. I: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed.; Blaisdell Publishing Co. [Ginn and Co.]: Waltham, MA, USA; Toronto, ON, Canada; London, UK, 1967.
dc.relation.referencesParis, R.B. Incomplete gamma and related functions. In NIST Handbook of Mathematical Functions; U.S. Department of Commerce: Washington, DC, USA, 2010; pp. 175–192.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.subject.lembWater-pipes -- Hydraulics
dc.subject.lembAir entrainment
dc.subject.lembPipe failures -- Prevention
dc.subject.lembDifferential equations, Nonlinear -- Applications
dc.subject.lembFluid dynamics -- Mathematical models
dc.subject.lembHydraulic transients
dc.subject.lembThermodynamics -- Mathematical models
dc.subject.lembWater distribution systems -- Simulation methods
dc.subject.lembPipeline hydraulics -- Mathematical models
dc.subject.odsODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.proposalNonlinear differential equationseng
dc.subject.proposalPipeline drainageeng
dc.subject.proposalPressure oscillationseng
dc.titleAn analytical model for the prediction of emptying processes in single water pipelines
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationcc7851f9-f447-40ad-a845-07f1d1c8839f
relation.isAuthorOfPublication276cfc78-a984-49e2-a962-a3ed47c35f62
relation.isAuthorOfPublication8a4184b7-6478-40b3-8f49-aa2edb1e2bef
relation.isAuthorOfPublication482051d5-f72e-4f5c-ab50-931342cd5b83
relation.isAuthorOfPublication.latestForDiscoverycc7851f9-f447-40ad-a845-07f1d1c8839f

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
applsci_26_05_2025.pdf
Tamaño:
545.44 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: