Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Torres R. | |
dc.creator | Lizarazo Z. | |
dc.creator | Torres E. | |
dc.date.accessioned | 2020-03-26T16:32:49Z | |
dc.date.available | 2020-03-26T16:32:49Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Considering that fractional correlation function and the fractional power spectral density, for -stationary random signals, form a fractional Fourier transform pair. We present an interpolation formula to estimate a random signal from a temporal random series, based on the fractional sampling theorem for -bandlimited random signals. Furthermore, by establishing the relationship between the sampling theorem and the von Neumann ergodic theorem, the estimation of the power spectral density of a random signal from one sample signal becomes a suitable approach. Thus, the validity of the sampling theorem for random signals is closely linked to an ergodic hypothesis in the mean sense. © 2014 IEEE. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | IEEE Transactions on Signal Processing; Vol. 62, Núm. 14; pp. 3695-3705 | |
dc.identifier.doi | 10.1109/TSP.2014.2328977 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 1053587X | |
dc.identifier.orcid | 56270896900 | |
dc.identifier.orcid | 8330328300 | |
dc.identifier.orcid | 35094573000 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9036 | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903694215&doi=10.1109%2fTSP.2014.2328977&partnerID=40&md5=0cb6bcebd7e51b7bb66bab03e6173451 | |
dc.subject.keywords | Fractional correlation | |
dc.subject.keywords | Fractional power spectrum | |
dc.subject.keywords | Ractional Fourier transform | |
dc.subject.keywords | Sampling theorem | |
dc.subject.keywords | Stochastic processes | |
dc.subject.keywords | Power spectral density | |
dc.subject.keywords | Random processes | |
dc.subject.keywords | Fractional correlation | |
dc.subject.keywords | Fractional Fourier transforms | |
dc.subject.keywords | Fractional power | |
dc.subject.keywords | Fractional power spectral density | |
dc.subject.keywords | Fractional sampling | |
dc.subject.keywords | Interpolation formulas | |
dc.subject.keywords | Sampling theorems | |
dc.subject.keywords | Stationary random signal | |
dc.subject.keywords | Digital signal processing | |
dc.title | Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | Kotel'nikov, V.A., On the transmission capacity of ether and wire in electro-communications (1933) Proc. 1st All-Union Conf. Questions of Commun., pp. 1-19. , Jan. 14 | |
dcterms.bibliographicCitation | Shannon, C.E., A mathematical theory of communication (1948) Bell Syst. Tech. J., 27, pp. 379-423. , 623-656 | |
dcterms.bibliographicCitation | Jerri, A.J., The shannon sampling theorem-Its various extensions and applications: A tutorial review (1977) Proc. IEEE, 65 (11), pp. 1565-1596 | |
dcterms.bibliographicCitation | Xia, X.-G., On bandlimited signals with fractional fourier transform (1996) IEEE Signal Processing Letters, 3 (3), pp. 72-74. , PII S1070990896018366 | |
dcterms.bibliographicCitation | Namias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265 | |
dcterms.bibliographicCitation | Almeida, L.B., The fractional Fourier transform and time-frequency representations (1994) IEEE Trans. Signal Process., 42 (11), pp. 3084-3091. , Nov | |
dcterms.bibliographicCitation | Lohmann, A.W., Mendlovic, D., Zalevsky, Z., (1998) IV: Fractional Transformations in Optics, Ser. Progress in Optics, 38, pp. 263-342. , E.Wolf, Ed. New York, NY, USA: Elsevier | |
dcterms.bibliographicCitation | Ozaktas, H.M., Zalevsky, Z., Kutay, M.A., (2001) The Fractional Fourier Transform with Applications in Optics and Signal Processing, , Chichester, U.K. Wiley | |
dcterms.bibliographicCitation | Pellat-Finet, P., (2009) Optique de Fourier: Théorie Métaxiale et Fractionnaire (In French), , Paris, France: Springer-Verlag Paris | |
dcterms.bibliographicCitation | Almeida, L.B., Product and convolution theorems for the fractional Fourier transform (1997) IEEE Signal Processing Letters, 4 (1), pp. 15-17 | |
dcterms.bibliographicCitation | Zayed, A.I., A convolution and product theorem for the fractional Fourier transform (1998) IEEE Signal Processing Letters, 5 (4), pp. 101-103 | |
dcterms.bibliographicCitation | Akay, O., Boudreaux-Bartels, G.F., Fractional convolution and correlation via operator methods and an application to detection of linear FM signals (2001) IEEE Transactions on Signal Processing, 49 (5), pp. 979-993. , DOI 10.1109/78.917802, PII S1053587X01022607 | |
dcterms.bibliographicCitation | Torres, R., Pellat-Finet, P., Torres, Y., Fractional convolution, fractional correlation and their translation invariance properties (2010) Signal Process., 90, pp. 1976-1984. , Jun | |
dcterms.bibliographicCitation | Candan, C., Ozaktas, H.M., Sampling and series expansion theorems for fractional Fourier and other transforms (2003) Signal Process., 83 (11), pp. 2455-2457 | |
dcterms.bibliographicCitation | Zayed, A.I., On the relationship between the Fourier and fractional Fourier transforms (1996) IEEE Signal Processing Letters, 3 (12), pp. 310-311. , PII S1070990896090347 | |
dcterms.bibliographicCitation | Zayed, A.I., Garcia, A.G., New sampling formulae for the fractional Fourier transform,"" (1999) Signal Process., 77 (1), pp. 111-114 | |
dcterms.bibliographicCitation | Torres, R., Pellat-Finet, P., Torres, Y., Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography (2006) IEEE Signal Processing Letters, 13 (11), pp. 676-679. , DOI 10.1109/LSP.2006.879470 | |
dcterms.bibliographicCitation | Wei, D., Ran, Q., Li, Y., Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform (2010) IEEE Signal Process. Lett., 17 (6), pp. 595-598 | |
dcterms.bibliographicCitation | Sharma, K., Comments on ""Generalized sampling expansion for bandlimited signals associated with fractional Fourier transform (2011) IEEE Signal Process. Lett., 18 (12), pp. 761-761 | |
dcterms.bibliographicCitation | Bhandari, A., Marziliano, P., Sampling and reconstruction of sparse signals in fractional Fourier domain (2010) IEEE Signal Process. Lett., 17 (3), pp. 221-224 | |
dcterms.bibliographicCitation | Wiener, N., (1964) Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, , ser. Technology press books in science and engineering. Cambridge, MA, USA: Technology Press of the Mass. Inst. of Technol | |
dcterms.bibliographicCitation | Tao, R., Zhang, F., Wang, Y., Fractional power spectrum (2008) IEEE Trans. Signal Process., 56, pp. 4199-4206. , Sep | |
dcterms.bibliographicCitation | Torres, R., Torres, E., Fractional Fourier analysis of random signals and the notion of -stationarity of the Wigner-Ville distribution (2013) IEEE Trans. Signal Process., 61 (6), pp. 1555-1560 | |
dcterms.bibliographicCitation | Wiener, N., Generalized harmonic analysis (1930) Acta Mathematica, 55 (1), pp. 117-258 | |
dcterms.bibliographicCitation | Khintchine, A., Korrelationstheorie der stationären stochastischen prozesse (1934) Mathematische Annalen, 109 (1), pp. 604-615 | |
dcterms.bibliographicCitation | Gardner, W., A sampling theorem for nonstationary random processes (corresp.) (1972) IEEE Trans. Inf. Theory, 18 (6), pp. 808-809 | |
dcterms.bibliographicCitation | Garcia, F.M., Lourtie, I.M., Buescu, J., Nonstationary processes and the sampling theorem (2001) IEEE Signal Process. Lett., 8 (4), pp. 117-119 | |
dcterms.bibliographicCitation | Tao, R., Zhang, F., Wang, Y., Sampling random signals in a fractional Fourier domain (2011) Signal Process., 91 (6), pp. 1394-1400 | |
dcterms.bibliographicCitation | Wei, D., Li, Y., Sampling reconstruction of n-dimensional bandlimited images after multilinear filtering in fractional Fourier domain (2013) Opt. Commun., 295, pp. 26-35 | |
dcterms.bibliographicCitation | Hopf, E., (1937) Ergodentheorie (In German), Ser. Ergebnisse der Mathematik und Ihrer Grenzgebiete 5 Bd., 5 (2). , Berlin, Germany: Julius Springer | |
dcterms.bibliographicCitation | Walters, P., Walters, P., (1982) An Introduction to Ergodic Theory, 79. , New York, NY, USA: Springer-Verlag | |
dcterms.bibliographicCitation | Neumann, J.V., Proof of the quasi-ergodic hypothesis (1932) Proc. Nat. Acad. Sci. USA, 18 (1), p. 70 | |
dcterms.bibliographicCitation | Doob, J., (1990) , Stochastic Processes, Ser., , Wiley Publications in Statistics. New York, NY, USA: Wiley | |
dcterms.bibliographicCitation | Birkhoff, G.D., Proof of the ergodic theorem (1931) Proc. Nat. Acad. Sci. USA, 17 (12), pp. 656-660 | |
dcterms.bibliographicCitation | Krengel, U., Brunel, A., (1985) Ergodic Theorems, Ser. de Gruyter Studies in Mathematics, , Berlin, Germany: W. de Gruyter | |
dcterms.bibliographicCitation | Bhandari, A., Zayed, A.I., Shift-invariant and sampling spaces associated with the fractional Fourier transform domain (2012) IEEE Trans. Signal Process., 60 (4), pp. 1627-1637 | |
dcterms.bibliographicCitation | Casinovi, G., Sampling and ergodic theorems for weakly almost periodic signals (2009) IEEE Trans. Inf. Theory, 55 (4), pp. 1883-1897. , Apr | |
dcterms.bibliographicCitation | McBride, A.C., Kerr, F.H., On namias's fractional Fourier transforms (1987) IMA J. Appl. Math., 39 (2), pp. 159-175 | |
dcterms.bibliographicCitation | Lohmann, A.W., Image rotation, Wigner rotation, and the fractional Fourier transform (1993) J. Opt. Soc. Amer. A, 10, pp. 2181-2186. , Oct | |
dcterms.bibliographicCitation | Boashash, B., (2003) Time Frequency Signal Analysis and Processing, , New York, NY, USA: Elsevier Science | |
dcterms.bibliographicCitation | Hlawatsch, F., Matz, G., Time-frequency methods for non-stationary statistical signal processing (2010) Time-Frequency Analysis: Concepts and Methods, pp. 279-320. , http://dx.doi.org/10.1002/9780470611203.ch10, London, U.K.: ISTE | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |