Power Flow in Bipolar DC Distribution Networks Considering Current Limits

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorGarcés, Alejandro
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-07-21T16:16:51Z
dc.date.available2023-07-21T16:16:51Z
dc.date.issued2022-09
dc.date.submitted2023-07
dc.description.abstractPower electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysisspa
dc.format.extent4 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationA. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.spa
dc.identifier.doi10.1109/TPWRS.2022.3181851.
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12310
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Transactions on Power Systems - Vol. 37 No 5 (2022)spa
dc.subject.keywordsDc gridsspa
dc.subject.keywordsNewton's methodspa
dc.subject.keywordsNumerical methodsspa
dc.subject.keywordsPower flowspa
dc.titlePower Flow in Bipolar DC Distribution Networks Considering Current Limitsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems with Constant Power Loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), art. no. 7328761, pp. 114-121. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919 doi: 10.1109/TCSI.2015.2497559spa
dcterms.bibliographicCitationBrust, J.J., Anitescu, M. Convergence Analysis of Fixed Point Chance Constrained Optimal Power Flow Problems (2022) IEEE Transactions on Power Systems, 37 (6), pp. 4191-4201. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3146873spa
dcterms.bibliographicCitationErtugrul, N., Abbott, D. DC is the Future [Point of View] (Open Access) (2020) Proceedings of the IEEE, 108 (5), art. no. 9080680, pp. 615-624. Cited 38 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/JPROC.2020.2982707spa
dcterms.bibliographicCitationGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationKerting, W.H. Radial distribution test feeders IEEE distribution planning working group report (Open Access) (1991) IEEE Transactions on Power Systems, 6 (3), pp. 975-985. Cited 919 times. doi: 10.1109/59.119237spa
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationLoomis, L.H., Sternberg, S. Advanced calculus, revised edition (2014) Advanced Calculus, Revised Edition, pp. 1-580. Cited 17 times. http://www.worldscientific.com/worldscibooks/10.1142/9095#t=toc ISBN: 978-981458394-7; 978-981458392-3 doi: 10.1142/9095spa
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537spa
dcterms.bibliographicCitationTaheri, S., Kekatos, V. Power Flow Solvers for Direct Current Networks (Open Access) (2020) IEEE Transactions on Smart Grid, 11 (1), art. no. 8758349, pp. 634-643. Cited 16 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2019.2927455spa
dcterms.bibliographicCitationGil-González, W. (2022) Power flow in bipolar DC distribution networks MATLABCentral File Exchange. Retrieved Jun. 29, 2022, [Online]. https://www.mathworks.com/matlabcentral/fileexchange/97407-power-flow-in-bipolar-dc-distribution-networksspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Power Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf
Size:
108.04 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: