Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorArias, F.A
dc.contributor.authorMalakhaltsev, M.
dc.date.accessioned2023-07-21T15:35:23Z
dc.date.available2023-07-21T15:35:23Z
dc.date.issued2020-12
dc.date.submitted2023-07
dc.description.abstractA contact structure on a three-dimensional manifold is a two-dimensional distribution on this manifold which satisfies the condition of complete non-integrability. If the distribution fails to satisfy this condition at points of some submanifold, we have a contact structure with singularities. The singularities of contact structures were studied by J. Martinet, B. Jakubczyk and M. Zhitomirskii. We consider a contact structure with singularities as a G-structure with singularities, we find some topological and differential invariants of singularities of contact structure and establish their relation to the invariants found by B. Jakubczyk and M. Zhitomirskii. © 2020, Pleiades Publishing, Ltd.spa
dc.format.medium12 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationArias, F.A., Malakhaltsev, M. Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold. Lobachevskii J Math 41, 2415–2426 (2020). https://doi.org/10.1134/S1995080220120070spa
dc.identifier.doi10.1134/S1995080220120070
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12265
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceLobachevskii Journal of Mathematics - Vol. 41 No.2 (2020)spa
dc.subject.keywords$G$-structure with singularitiesspa
dc.subject.keywordsContact structurespa
dc.subject.keywordsSub-Riemannian structurespa
dc.titleTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifoldspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dcterms.bibliographicCitationMartinet, J. Sur les singularités des formes différentielles (1970) Ann. Inst. Fourier (Grenoble), 20, pp. 95-178. Cited 98 times.spa
dcterms.bibliographicCitationJakubczyk, B., Zhitomirskii, M. Local reduction theorems and invariants for singular contact structures (2001) Annales de l'Institut Fourier, 51 (1), pp. 237-295. Cited 8 times. http://annalif.ujf-grenoble.fr/ doi: 10.5802/aif.1823spa
dcterms.bibliographicCitationArteaga B., J.R., Malakhaltsev, M.A. Symmetries of sub-Riemannian surfaces (2011) Journal of Geometry and Physics, 61 (1), pp. 290-308. Cited 5 times. doi: 10.1016/j.geomphys.2010.09.024spa
dcterms.bibliographicCitationArias Amaya, F.A., Malakhaltsev, M. Topological Invariants of Principal G-Bundles with Singularities (Open Access) (2018) Lobachevskii Journal of Mathematics, 39 (5), pp. 623-633. http://www.springer.com/math/journal/12202 doi: 10.1134/S1995080218050013spa
dcterms.bibliographicCitationKobayashi, S., Nomizu, K. (1996) Foundations of Differential Geometry, Wiley Classics Library, 1. Cited 6637 times. (Wiley, New York,), Volspa
dcterms.bibliographicCitationMontgomery, R. A Tour of Subriemannian Geometries, Their Geodesics and Applications (2002) Of Mathematical Surveys and Monographs, 91. Cited 514 times. AMS, Providencespa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdf
Size:
94.83 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: