Deep learning in multi-sensor agriculture and crop management
| datacite.rights.accessrights | http://purl.org/coar/access_right/c_14cb | |
| dc.audience | Investigadores | |
| dc.contributor.other | Arrechea Castillo, Darwin Alexis | |
| dc.coverage.spatial | Colombia, 2025 | |
| dc.date.accessioned | 2025-03-10T20:17:00Z | |
| dc.date.available | 2025-03-10T20:17:00Z | |
| dc.date.issued | 2025-03-10 | |
| dc.date.submitted | 2025-03-10 | |
| dc.description.abstract | The integration of deep learning (DL) with multi-sensor data acquisition technologies is revolutionizing the field of agriculture and crop management, offering unprecedented precision and efficiency in monitoring and decision-making processes. This chapter explores the synergy between advanced DL algorithms and multi-sensor data. By integrating data from optical, SAR, thermal, and hyperspectral sensors, DL models offer higher accuracies in crop monitoring, classification, yield prediction, and stress detection, among other applications. This chapter highlights recent developments in the application of Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and transformers to analyze complex agricultural datasets, overcoming challenges related to environmental variability and the need for large-scale data. Despite computational and implementation challenges, these technologies promise enhanced crop yields, sustainability, and resource efficiency. The chapter emphasizes the importance of scalable and interpretable models, as well as integrated systems that leverage real-time data for informed decision-making, marking a huge step towards next-generation smart agriculture practices. | |
| dc.description.tableofcontents | 1 Deep Learning in Multisensor Agriculture and Crop Management 1.1 Introduction 1.2 Data Collection and Management 1.2.1 Data Types Essential for Multisensor Agriculture 1.3 Traditional Methods for Precision Agriculture 1.4 Deep Learning in Precision Agriculture: Concepts and Applications 1.4.1 Deep Learning with Single-Sensor Data 1.4.2 Deep Learning with multisensor data 1.5 Conclusion 1.6 Acknowledgement | |
| dc.format.extent | 55 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | D.A. Arrechea-Castillo and Y. T. Solano-Correa, “Chapter 14: Deep learning in multi-sensor agriculture and crop management,” in Deep Learning for Multi-Sensor Earth Observation, Oxford: Elsevier, pp. 335-379, Feb. 2025. DOI: 10.1016/B978-0-44-326484-9.00025-7. | |
| dc.identifier.doi | 10.1016/B978-0-44-326484-9.00025-7 | |
| dc.identifier.instname | Universidad Tecnológica de Bolívar | |
| dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/13264 | |
| dc.language.iso | eng | |
| dc.publisher.faculty | Ciencias Básicas | |
| dc.rights | CC0 1.0 Universal | en |
| dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
| dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | |
| dc.subject.armarc | LEMB | |
| dc.subject.keywords | Inteligencia artificial | |
| dc.subject.keywords | Aprendizaje profundo (Deep Learning) | |
| dc.subject.keywords | Procesamiento de datos multisensoriales | |
| dc.subject.keywords | Innovación tecnológica en la agricultura | |
| dc.subject.keywords | Tecnología agrícola y manejo de cultivos | |
| dc.subject.keywords | Sensores y monitoreo en agricultura | |
| dc.subject.keywords | Sistemas de información en la agricultura | |
| dc.title | Deep learning in multi-sensor agriculture and crop management | |
| dc.type.driver | info:eu-repo/semantics/bookPart | |
| dc.type.hasversion | info:eu-repo/semantics/draft | |
| dc.type.spa | http://purl.org/coar/resource_type/c_3248 | |
| dcterms.bibliographicCitation | A. Ullah, A. Nawaz, M. Farooq, K.H.M. Siddique, Agricultural innovation and sustainable development: a case study of rice–wheat cropping systems in South Asia, Sustainability 13 (4) (2021 Jan) 1965, Available from: https://www.mdpi.com/2071- 1050/13/4/1965. | |
| dcterms.bibliographicCitation | K. Islam, R. Yokoi, A.V. Pastor, M. Motoshita, Balancing water use and nutrition for crop production in a highly dense population -- Bangladesh, Sustainable Production and Consumption 43 (2023 Dec) 389--399, Available from: https://www.sciencedirect. com/science/article/pii/S2352550923002725 | |
| dcterms.bibliographicCitation | D. Wang, W. Cao, F. Zhang, Z. Li, S. Xu, X. Wu, A review of deep learning in multiscale agricultural sensing, Remote Sensing 14 (3) (2022 Jan) 559, Available from: https:// www.mdpi.com/2072-4292/14/3/559 | |
| dcterms.bibliographicCitation | R.C.d. Oliveira, R.D.d.S.e. Silva, Artficial intelligence in agriculture: benfits, challenges, and trends, Applied Sciences 13 (13) (2023 Jan) 7405, Available from: https:// www.mdpi.com/2076-3417/13/13/7405 | |
| dcterms.bibliographicCitation | A. Wijerathna-Yapa, R. Pathirana, Sustainable agro-food systems for addressing climate change and food security, Agriculture 12 (10) (2022 Oct) 1554, Available from: https://www.mdpi.com/2077-0472/12/10/1554 | |
| dcterms.bibliographicCitation | Y. He, J. Song, W. Ouyang, Q. Li, Formation mechanism and implementation path of a digital agriculture innovation ecosystem, Tehniˇcki Vjesnik 31 (2) (2024 Feb) 402--411, Available from: https://hrcak.srce.hr/314828. | |
| dcterms.bibliographicCitation | J.A. Gibbs, L. Mcausland, C.A. Robles-Zazueta, E.H. Murchie, A.J. Burgess, A deep learning method for fully automatic stomatal morphometry and maximal conductance estimation, Frontiers in Plant Science 12 (2021), Available from: https://www. frontiersin.org/articles/10.3389/fpls.2021.780180 | |
| dcterms.bibliographicCitation | A. Reyana, S. Kautish, P.M.S. Karthik, I.A. Al-Baltah, M.B. Jasser, A.W. Mohamed, Accelerating crop yield: multisensor data fusion and machine learning for agriculture text classfication, in: IEEE Access, IEEE Access 11 (2023) 20795--20805, Available from: https://ieeexplore.ieee.org/document/10054040 | |
| dcterms.bibliographicCitation | W. Song, A. Feng, G. Wang, Q. Zhang, W. Dai, X. Wei, et al., Bi-objective crop mapping from Sentinel-2 images based on multiple deep learning networks, Remote Sensing 15 (13) (2023 Jan) 3417, Available from: https://www.mdpi.com/2072-4292/15/13/ 3417 | |
| dcterms.bibliographicCitation | K. Dilmurat, V. Sagan, M. Maimaitijiang, S. Moose, F.B. Fritschi, Estimating crop seed composition using machine learning from multisensory UAV data, Remote Sensing 14 (19) (2022 Jan) 4786, Available from: https://www.mdpi.com/2072-4292/14/19/ 4786 | |
| dcterms.bibliographicCitation | I.M. Mehedi, M.S. Hanif, M. Bilal, M.T. Vellingiri, T. Palaniswamy, Remote sensing and decision support system applications in precision agriculture: challenges and possibilities, in: IEEE Access, IEEE Access 12 (2024) 44786--44798, Available from: https:// ieeexplore.ieee.org/document/10477982 | |
| dcterms.bibliographicCitation | H.M. Albarakati, M.A. Khan, A. Hamza, F. Khan, N. Kraiem, L. Jamel, et al., A novel deep learning architecture for agriculture land cover and land use classfication from remote sensing images based on network-level fusion of self-attention architecture, in: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17 (2024) 6338--6353, Available from: https://ieeexplore.ieee.org/document/10452788 | |
| dcterms.bibliographicCitation | M.H. Alemu, A. Halloran, S.B. Olsen, J.P. Anankware, P. Nyeko, M. Ayieko, et al., Promoting insect farming and household consumption through agricultural training and nutrition education in Africa: a study protocol for a multisite cluster-randomized controlled trial, PLoS ONE 18 (7) (2023 Jul) e0288870, Available from: https://journals. plos.org/plosone/article?id=10.1371/journal.pone.0288870 | |
| dcterms.bibliographicCitation | R. Kumar, S. Kumar, B.S. Yashavanth, N. Venu, P.C. Meena, A. Dhandapani, et al., Natural farming practices for chemical-free agriculture: implications for crop yield and profitability, Agriculture 13 (3) (2023 Mar) 647, Available from: https://www.mdpi. com/2077-0472/13/3/647 | |
| dcterms.bibliographicCitation | J.L. Peña-Arancibia, M.G. Mahboob, A.T. Islam, M. Mainuddin, Y. Yu, M.D. Ahmad, et al., The green revolution from space: mapping the historic dynamics of main rice types in one of the world’s food bowls, Remote Sensing Applications: Society and Environment 21 (2021 Jan) 100460, Available from: https://www.sciencedirect.com/science/ article/pii/S2352938520306352 | |
| dcterms.bibliographicCitation | J. Kaur, G. Pandove, Understanding the benficial interaction of plant growth promoting rhizobacteria and endophytic bacteria for sustainable agriculture: a bio-revolution approach, Journal of Plant Nutrition 46 (14) (2023 Aug) 3569--3597, https://doi.org/ 10.1080/01904167.2023.2206425 | |
| dcterms.bibliographicCitation | M. Kganyago, C. Adjorlolo, P. Mhangara, L. Tsoeleng, Optical remote sensing of crop biophysical and biochemical parameters: an overview of advances in sensor technologies and machine learning algorithms for precision agriculture, Computers and Electronics in Agriculture 218 (2024 Mar) 108730, Available from: https:// www.sciencedirect.com/science/article/pii/S0168169924001212 | |
| dcterms.bibliographicCitation | R. Mahato, D. Bushi, G. Nimasow, O.D. Nimasow, Chapter 9 - remote sensing and geographic information system–based land suitability analysis for precision agriculture: a case of paddy cultivation in East Siang district of Arunachal Pradesh (India), in: S. Lamine, P.K. Srivastava, A. Kayad, F. Muñoz-Arriola, P.C. Pandey (Eds.), Remote Sensing in Precision Agriculture. Earth Observation., Academic Press, 2024, pp. 151--173, Available from: https://www.sciencedirect.com/science/article/ pii/B9780323910682000230 | |
| dcterms.bibliographicCitation | M. Jonak, J. Mucha, S. Jezek, D. Kovac, K. Cziria, SPAGRI-AI: smart precision agriculture dataset of aerial images at different heights for crop and weed detection using super-resolution, Agricultural Systems 216 (2024 Apr) 103876, Available from: https:// www.sciencedirect.com/science/article/pii/S0308521X2400026X | |
| dcterms.bibliographicCitation | C. Nguyen, V. Sagan, S. Bhadra, S. Moose, UAV multisensory data fusion and multitask deep learning for high-throughput maize phenotyping, Sensors 23 (4) (2023 Jan) 1827, Available from: https://www.mdpi.com/1424-8220/23/4/1827 | |
| dcterms.bibliographicCitation | D. Han, Big data analytics, data science, ML&AI for connected, data-driven precision agriculture and smart farming systems: challenges and future directions, in: Proceedings of Cyber-Physical Systems and Internet of Things Week 2023. CPS-IoT Week ’23, Association for Computing Machinery, New York, NY, USA, 2023, pp. 378--384, Available from: https://dl.acm.org/doi/10.1145/3576914.3588337. | |
| dcterms.bibliographicCitation | C.E. Hachimi, S. Belaqziz, S. Khabba, B. Sebbar, D. Dhiba, A. Chehbouni, Smart weather data management based on artficial intelligence and big data analytics for precision agriculture, Agriculture 13 (1) (2023 Jan) 95, Available from: https:// www.mdpi.com/2077-0472/13/1/95. | |
| dcterms.bibliographicCitation | J. Reji, R.R. Nidamanuri, Deep learning based fusion of LiDAR point cloud and multispectral imagery for crop classfication sensitive to nitrogen level, in: 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), vol. 1, 2023, pp. 1--4, Available from: https://ieeexplore.ieee.org/document/10064497 | |
| dcterms.bibliographicCitation | S. Deivasigamani, A.J. Mabel Rani, R. Natchadalingam, P. Vijayakarthik, G.B. Sendhil Kumar, P.C.S. Reddy, Crop yield prediction using deep reinforcement learning, in: 2023 Second International Conference on Trends in Electrical, Electronics, and Computer Engineering (TEECCON), 2023, pp. 137--142, Available from: https://ieeexplore. ieee.org/document/10335861 | |
| dcterms.bibliographicCitation | M. Mulley, L. Kooistra, L. Bierens, High-resolution multisensor remote sensing to support date palm farm management, Agriculture 9 (2) (2019 Feb) 26, Available from: https://www.mdpi.com/2077-0472/9/2/26 | |
| dcterms.bibliographicCitation | A. Soussi, E. Zero, R. Sacile, D. Trinchero, M. Fossa, Smart sensors and smart data for precision agriculture: a review, Sensors 24 (8) (2024 Jan) 2647, Available from: https:// www.mdpi.com/1424-8220/24/8/2647. | |
| dcterms.bibliographicCitation | D.C. Tsouros, S. Bibi, P.G. Sarigiannidis, A review on UAV-based applications for precision agriculture, Information 10 (11) (2019 Nov) 349, Available from: https:// www.mdpi.com/2078-2489/10/11/349. | |
| dcterms.bibliographicCitation | C. Huang, W. He, J. Liu, N.T. Nguyen, H. Yang, Y. Lv, et al., Exploring the potential of long short-term memory networks for predicting net CO2 exchange across various ecosystems with multi-source data, Journal of Geophysical Research. Atmospheres 129 (7) (2024 Apr) e2023JD040418, Available from: https://agupubs.onlinelibrary. wiley.com/doi/10.1029/2023JD040418 | |
| dcterms.bibliographicCitation | M. Masi, M. De Rosa, Y. Vecchio, L. Bartoli, F. Adinolfi, The long way to innovation adoption: insights from precision agriculture, Agricultural and Food Economics 10 (1) (2022 Oct) 27, https://doi.org/10.1186/s40100-022-00236-5. | |
| dcterms.bibliographicCitation | Y.T. Solano-Correa, K. Meshkini, F. Bovolo, L. Bruzzone, Automatic large-scale precise mapping and monitoring of agricultural fields at country level with Sentinel-2 SITS, in: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022) 3131--3145, Available from: https://ieeexplore.ieee.org/document/9749002 | |
| oaire.resourcetype | http://purl.org/coar/resource_type/c_3248 | |
| oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce |