A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.creator | Reyes-Vera, E. | |
dc.creator | Acevedo-Osorio, G. | |
dc.creator | Arias-Correa, M. | |
dc.creator | Senior, D.E. | |
dc.date.accessioned | 2019-11-06T19:05:16Z | |
dc.date.available | 2019-11-06T19:05:16Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This work presents a non-invasive, reusable and submersible permittivity sensor that uses a microwave technique for the dielectric characterization of liquid materials. The proposed device consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing principle is based on the notch introduced by the resonators in the transmission coefficient, which is affected due to the introduction of the sensor in a new liquid material. Then, a frequency shift of the notch and the Q-factor of the proposed sensor are related with the changes in the surrounding medium. By means of a particular experimental procedure, commercial liquids are employed to obtain the calibration curve. Thus, a mathematical equation is obtained to extract the dielectric permittivity of liquid materials with unknown dielectric properties. A good match between simulated and experimental results is obtained, as well as a high Q-factor, compact size, good sensitivity and high repeatability for use in sensing applications. Sensors like the one here presented could lead to promising solutions for characterizing materials, particularly in determining material properties and quality in the food industry, bio-sensing and other applications. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. | eng |
dc.description.sponsorship | Instituto Tecnológico de Costa Rica: P15106, P13252, Universidad Tecnológica de Pereira | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Sensors (Switzerland); Vol. 19, Núm. 8 | |
dc.identifier.doi | 10.3390/s19081936 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8743 | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85065302543&doi=10.3390%2fs19081936&partnerID=40&md5=8bdd8af835db67e3482bb946520f94c0 | |
dc.source | Scopus 57195722871 | |
dc.source | Scopus 57204207314 | |
dc.source | Scopus 57200341418 | |
dc.source | Scopus 36698427600 | |
dc.subject.keywords | Material characterization | |
dc.subject.keywords | Metamaterial | |
dc.subject.keywords | Microwave sensor | |
dc.subject.keywords | Permittivity measurements | |
dc.subject.keywords | Split ring resonator | |
dc.subject.keywords | Chemical contamination | |
dc.subject.keywords | Dielectric materials | |
dc.subject.keywords | Dielectric properties of liquids | |
dc.subject.keywords | Liquids | |
dc.subject.keywords | Metamaterials | |
dc.subject.keywords | Microwave resonators | |
dc.subject.keywords | Monopole antennas | |
dc.subject.keywords | Optical resonators | |
dc.subject.keywords | Permittivity | |
dc.subject.keywords | Permittivity measurement | |
dc.subject.keywords | Q factor measurement | |
dc.subject.keywords | Ring gages | |
dc.subject.keywords | Submersibles | |
dc.subject.keywords | Dielectric characterization | |
dc.subject.keywords | Dielectric permittivities | |
dc.subject.keywords | Experimental procedure | |
dc.subject.keywords | Material characterizations | |
dc.subject.keywords | Mathematical equations | |
dc.subject.keywords | Sensing applications | |
dc.subject.keywords | Split ring resonator | |
dc.subject.keywords | Transmission coefficients | |
dc.subject.keywords | Microwave sensors | |
dc.title | A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | Zhou, H., Hu, D., Yang, C., Chen, C., Ji, J., Chen, M., Chen, Y., Mu, X., Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic Sensor (2018) Sci. Rep, 8, p. 14801 | |
dcterms.bibliographicCitation | Kaatze, U., Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging (2013) Meas. Sci. Technol, 24 | |
dcterms.bibliographicCitation | Ansari, M.A.H., Jha, A.K., Akhtar, M.J., Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity (2015) IEEE Sens. J, 15, pp. 7181-7189 | |
dcterms.bibliographicCitation | Jilnai, M., Wen, W., Cheong, L., Ur Rehman, M., A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging (2016) Sensors, 16, p. 52 | |
dcterms.bibliographicCitation | Gutierrez, S., Just, T., Sachs, J., Baer, C., Vega, F., Field-Deployable System for the Measurement of Complex Permittivity of Improvised Explosives and Lossy Dielectric Materials (2018) IEEE Sens. J, 18, pp. 6706-6714 | |
dcterms.bibliographicCitation | Murata, K.I., Hanawa, A., Nozaki, R., Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies (2005) J. Appl. Phys, p. 98 | |
dcterms.bibliographicCitation | Saeed, K., Pollard, R.D., Hunter, I.C., Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials (2008) IEEE Trans. Microw. Theory Tech, 56, pp. 2340-2347 | |
dcterms.bibliographicCitation | Valencia-Balvín, C., Pérez-Walton, S., Osorio-Guillén, J.M., First principles calculations of the electronic and dielectric properties of λ-Ta2O5 (2018) TecnoLógicas, 21, pp. 43-52 | |
dcterms.bibliographicCitation | Stacheder, M., Koeniger, F., Schuhmann, R., New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements (2009) Sensors, 9, pp. 2951-2967 | |
dcterms.bibliographicCitation | Torrealba-Meléndez, R., Sosa-Morales, M.E., Olvera-Cervantes, J.L., Corona-Chávez, A., Dielectric Properties of Beans at Ultra-Wide Band Frequencies (2014) J. Microw. Power Electromagn. Energy, 48, pp. 104-112 | |
dcterms.bibliographicCitation | Lee, H.J., Lee, H.S., Yoo, K.H., Yook, J.G., DNA sensing using split-ring resonator alone at microwave regime (2010) J. Appl. Phys, p. 108 | |
dcterms.bibliographicCitation | Sun, J., Huang, M., Yang, J.-J., Li, T.-H., Lan, Y.-Z., A microring resonator based negative permeability metamaterial sensor (2011) Sensors, 11, pp. 8060-8071 | |
dcterms.bibliographicCitation | Stevan, S., Paiter, L., Galvão, J., Roque, D., Chaves, E., Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress (2015) Sensors, 15, pp. 26457-26477 | |
dcterms.bibliographicCitation | Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K., (2004) Microwave Electronics Measurement and Materials Characterization, , John Wiley & Sons, Ltd: Chichester, UK | |
dcterms.bibliographicCitation | Megriche, A., Belhadj, A., Mgaidi, A., Microwave dielectric properties of binary solvent water- alcohol, alcohol-alcohol mixtures at temperatures between (2012) Mediterr. J. Chem, 1, pp. 200-209 | |
dcterms.bibliographicCitation | Saeed, K., Shafique, M.F., Byrne, M.B., Hunter, I.C., (2012) Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications, , Haq, M.Z., Ed., In Tech: London, UK | |
dcterms.bibliographicCitation | Jilani, M.T., Zaka, M., Khan, A.M., Khan, M.T., Ali, S.M., A Brief Review of Measuring Techniques for Characterization of Dielectric Materials (2012) Int. J. Inf. Technol. Electr. Eng, p. 1 | |
dcterms.bibliographicCitation | Lobato-Morales, H., Corona-Chávez, A., Murthy, D.V.B., Olvera-Cervantes, J.L., Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities (2010) Rev. Sci. Instrum, 81, p. 64704 | |
dcterms.bibliographicCitation | Li, S., Akyel, C., Bosisio, R.G., Precise Calculations and Measurements on the Complex Dielectric Constant of Lossy Materials Using TM/sub 010/ Cavity Perturbation Techniques (1981) IEEE Trans. Microw. Theory Tech, 29, pp. 1041-1048 | |
dcterms.bibliographicCitation | Galindo-Romera, G., Javier Herraiz-Martinez, F., Gil, M., Martinez-Martinez, J.J., Segovia-Vargas, D., Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization (2016) IEEE Sens. J, 16, pp. 3587-3596 | |
dcterms.bibliographicCitation | Acevedo-Osorio, G., Muñoz Ossa, H., Reyes-Vera, E., Performance Analysis of Monopole Excited Split Ring Resonator for Permittivity Characterization (2017) 2017 42Nd International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz) | |
dcterms.bibliographicCitation | IEEE: Cancun, Mexico, pp. 1-2 | |
dcterms.bibliographicCitation | Lobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Planar sensors for RFID wireless complex-dielectric-permittivity sensing of liquids (2013) 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) | |
dcterms.bibliographicCitation | IEEE, pp. 1-3. , Berlin, Germany | |
dcterms.bibliographicCitation | Iqbal, A., Smida, A., Saraereh, O.A., Alsafasfeh, Q.H., Mallat, N.K., Lee, B.M., Cylindrical Dielectric Resonator Antenna-Based Sensors for Liquid Chemical Detection (2019) Sensors, 19, p. 1200 | |
dcterms.bibliographicCitation | Xu, K., Liu, Y., Chen, S., Zhao, P., Peng, L., Dong, L., Wang, G., Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity (2018) IEEE Access, 6, pp. 26111-26120 | |
dcterms.bibliographicCitation | Domínguez, M., Cataño, D., Reyes, E., Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures (2015) Actas Ing, 1, pp. 110-114 | |
dcterms.bibliographicCitation | Benkhaoua, L., Benhabiles, M.T., Mouissat, S., Riabi, M.L., Miniaturized Quasi-Lumped Resonator for Dielectric Characterization of Liquid Mixtures (2016) IEEE Sens. J, 16, pp. 1603-1610 | |
dcterms.bibliographicCitation | Islam, M.T., Hoque, A., Almutairi, A.F., Amin, N., Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application (2019) Sensors, 19, p. 169 | |
dcterms.bibliographicCitation | Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity (2000) Phys. Rev. Lett, 84, pp. 4184-4187 | |
dcterms.bibliographicCitation | Castellanos, L.M., Lopez, F., Reyes-Vera, E., Metamateriales: Principales características y aplicaciones (2016) Rev. La Acad. Colomb. Ciencias Exactas, Físicas Y Nat, 40, p. 395 | |
dcterms.bibliographicCitation | Catano-Ochoa, D., Senior, D.E., Lopez, F., Reyes-Vera, E., Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators (2016) Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, Fajardo, Puerto Rico, 26 June–1 | |
dcterms.bibliographicCitation | Raghavan, S., Rajeshkumar, V., An overview of metamaterials in biomedical applications (2013) Prog. Electromagn. Res. Symp, pp. 368-371 | |
dcterms.bibliographicCitation | Chen, T., Li, S., Sun, H., Metamaterials application in sensing (2012) Sensors, 12, pp. 2742-2765 | |
dcterms.bibliographicCitation | Cheng, X., Shi, J., Jao, P., Senior, D.E., Yoon, Y.-K., Reconfigurable split ring resonator array loaded waveguide for insitu tuning (2011) Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane,Wa, USA, 3–8 July, pp. 2947-2950 | |
dcterms.bibliographicCitation | Reyes-Vera, E., Senior, D.E., Luna-Rivera, J.M., Lopez, F., Advances in electromagnetic applications and communications (2018) TecnoLógicas, 21, pp. 9-13 | |
dcterms.bibliographicCitation | Rusni, I., Ismail, A., Alhawari, A., Hamidon, M., Yusof, N., An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications (2014) Sensors, 14, pp. 13134-13148 | |
dcterms.bibliographicCitation | Lobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Chavez-Perez, R.A., Medina-Monroy, J.L., Wireless Sensing of Complex Dielectric Permittivity of Liquids Based on the RFID (2014) IEEE Trans. Microw. Theory Tech, 62, pp. 2160-2167 | |
dcterms.bibliographicCitation | Lee, H.J., Lee, J.H., Choi, S., Jang, I.S., Choi, J.S., Jung, H., Il Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers (2013) Appl. Phys. Lett, p. 103 | |
dcterms.bibliographicCitation | Lee, H.J., Yook, J.G., Biosensing using split-ring resonators at microwave regime (2008) Appl. Phys. Lett, 92, pp. 2011-2014 | |
dcterms.bibliographicCitation | Lee, C.-S., Yang, C.-L., Thickness and Permittivity Measurement in Multi-Layered Dielectric Structures Using Complementary Split-Ring Resonators (2014) IEEE Sens. J, 14, pp. 695-700 | |
dcterms.bibliographicCitation | Salim, A., Lim, S., Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor (2016) Sensors, 16, p. 1802 | |
dcterms.bibliographicCitation | Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., Abbott, D., High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization (2014) IEEE Sens. J, 14, pp. 1345-1351 | |
dcterms.bibliographicCitation | Withayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., Fumeaux, C., Abbott, D., Metamaterial-based microfluidic sensor for dielectric characterization (2013) Sens. Actuators, a Phys, 189, pp. 233-237 | |
dcterms.bibliographicCitation | Velez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids (2017) IEEE Sens. J, 17, pp. 6589-6598 | |
dcterms.bibliographicCitation | Chretiennot, T., Dubuc, D., Grenier, K.A., Microwave and Microfluidic Planar Resonator for Efficient and Accurate Complex Permittivity Characterization of Aqueous Solutions (2013) IEEE Trans. Microw. Theory Tech, 61, pp. 972-978 | |
dcterms.bibliographicCitation | Velez, P., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids (2018) IEEE Access, 6 | |
dcterms.bibliographicCitation | Velez, P., Munoz-Enano, J., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements (2019) IEEE Sens. J, 19, pp. 2562-2569 | |
dcterms.bibliographicCitation | Boratay, K., Miniaturized negative permeability materials (2007) Appl. Phys. Lett, pp. 137-139 | |
dcterms.bibliographicCitation | Zahertar, S., Yalcinkaya, A.D., Torun, H., Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies (2015) AIP Adv, 5 | |
dcterms.bibliographicCitation | Baena, J.D., Bonache, J., Martin, F., Sillero, R.M., Falcone, F., Lopetegi, T., Laso, M.A.G., Portillo, M.F., Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines (2005) IEEE Trans. Microw. Theory Tech, 53, pp. 1451-1461 | |
dcterms.bibliographicCitation | Alahnomi, R.A., Zakaria, Z., Ruslan, E., Ab Rashid, S.R., Mohd Bahar, A.A., High-Q Sensor Based on Symmetrical Split Ring Resonator With Spurlines for Solids Material Detection (2017) IEEE Sens. J, 17, pp. 2766-2775 | |
dcterms.bibliographicCitation | Alahnomi, R.A., Zakaria, Z., Ruslan, E., Bahar, A.A.M., A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors (2016) Meas. Sci. Rev, 16, pp. 21-27 | |
dcterms.bibliographicCitation | Kumari, R., Patel, P.N., Yadav, R., An ENG Resonator-Based Microwave Sensor for the Characterization of Aqueous Glucose (2018) J. Phys. D. Appl. Phys, 51 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |
Files
Original bundle
1 - 1 of 1