Development and implementation of an optical profilometer by laser triangulation

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorQuintero, Fernando J.
dc.contributor.authorMendoza, Kevin
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2023-07-18T19:33:47Z
dc.date.available2023-07-18T19:33:47Z
dc.date.issued2020
dc.date.submitted2023
dc.description.abstractProfilometers are instruments commonly used in surface metrology tasks. These instruments play a key role in the industry, such as in manufacturing and quality assurance. However, conventional profilometry techniques require direct contact with the object. In this work, we developed a practical and low-cost optical profilometer for contactless profilometry. The proposed profilometer is based on a laser triangulation system. A laser spot is projected onto the surface of an object, which is captured by a camera. The images are processed to detect the laser spot's location and obtain the object's surface height through calibration. We designed and built the translation stage to process the object's surface. Finally, encouraging results show that the profilometer provides high accuracy with fast acquisition. © 2020 IEEE.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationF. J. Quintero, K. Mendoza, L. A. Romero and A. G. Marrugo, "Desarrollo e implementación de un perfilómetro óptico por triangulación láser," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290307.spa
dc.identifier.doi10.1109/CIIMA50553.2020.9290307
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12147
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedingsspa
dc.subject.armarcLEMB
dc.subject.keywordsLaser triangulation;spa
dc.subject.keywordsOptical profilometer;spa
dc.subject.keywordsSurface metrology;spa
dc.subject.keywordsSurface profilespa
dc.titleDevelopment and implementation of an optical profilometer by laser triangulationspa
dc.title.alternativeDesarrollo e implementación de un perfilómetro óptico por triangulación láserspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dcterms.bibliographicCitationSon, S., Takatori, S.C., Belardi, B., Podolski, M., Bakalara, M.H., Fletcher, D.A. Molecular height measurement by cell surface optical profilometry (CSOP) (2020) Proceedings of the National Academy of Sciences of the United States of America, 117 (25), pp. 14209-14219. Cited 12 times. https://www.pnas.org/content/pnas/117/25/14209.full.pdf doi: 10.1073/pnas.1922626117spa
dcterms.bibliographicCitationChen, L.-C., Huang, C.-C. Miniaturized 3D surface profilometer using digital fringe projection (2005) Measurement Science and Technology, 16 (5), pp. 1061-1068. Cited 68 times. http://www.iop.org/EJ/journal/0957-0233 doi: 10.1088/0957-0233/16/5/003spa
dcterms.bibliographicCitationTownsend, A., Senin, N., Blunt, L., Leach, R.K., Taylor, J.S. Surface texture metrology for metal additive manufacturing: a review (2016) Precision Engineering, 46, pp. 34-47. Cited 487 times. doi: 10.1016/j.precisioneng.2016.06.001spa
dcterms.bibliographicCitationWagh, R.A., Panse, M.S., Apte, H. (2015) Calibration Method for Height Measurement of Object Using Laser Triangulation, 3 (4), pp. 27-31.spa
dcterms.bibliographicCitationLee, K.-C., Yang, J.-S., Yu, H.H. Development and evaluation of a petal thickness measuring device based on the dual laser triangulation method (2013) Computers and Electronics in Agriculture, 99, pp. 85-92. Cited 17 times. www.elsevier.com/inca/publications/store/5/0/3/3/0/4 doi: 10.1016/j.compag.2013.09.001spa
dcterms.bibliographicCitationPettigrew, R.M., Hancock, F.J. Optical profilometer (2016) Ergonomics, pp. 1-6. 10031spa
dcterms.bibliographicCitationMarrugo, A.G., Gao, F., Zhang, S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited] (2020) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 37 (9), pp. B60-B77. Cited 102 times. https://www.osapublishing.org/abstract.cfm?URI=josaa-37-9-B60 doi: 10.1364/JOSAA.398644spa
dcterms.bibliographicCitationAng, K.T., Fang, Z.P., Tay, A. Note: Development of high speed confocal 3D profilometer (Open Access) (2014) Review of Scientific Instruments, 85 (11), art. no. 116103. Cited 7 times. http://scitation.aip.org/content/aip/journal/rsi doi: 10.1063/1.4901518spa
dcterms.bibliographicCitationWu, C., Chen, B., Ye, C. Detecting defects on corrugated plate surfaces using a differential laser triangulation method (2020) Optics and Lasers in Engineering, 129, art. no. 106064. Cited 6 times. https://www.journals.elsevier.com/optics-and-lasers-in-engineering doi: 10.1016/j.optlaseng.2020.106064spa
dcterms.bibliographicCitationAdamov, A.A., Baranov, M.S., Khramov, V.N., Abdrakhmanov, V.L., Golubev, A.V., Chechetkin, I.A. Modified method of laser triangulation (Open Access) (2018) Journal of Physics: Conference Series, 1135 (1), art. no. 012049. Cited 3 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1135/1/012049spa
dcterms.bibliographicCitationStruckmeier, F., Zhao, J., León, F.P. Measuring the supporting slats of laser cutting machines using laser triangulation (Open Access) (2020) International Journal of Advanced Manufacturing Technology, 108 (11-12), pp. 3819-3833. Cited 3 times. http://www.springerlink.com/content/0268-3768 doi: 10.1007/s00170-020-05640-zspa
dcterms.bibliographicCitationLatimer, W. Understanding laser-based 3D triangulation methods (2015) Vis. Syst. Des., 20 (6), pp. 31-35. Cited 5 times. https://www.vision-systems.com/magazine/577442spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Scopus - Document details - Development and implementation of an optical profilometer by laser triangulation.pdf
Size:
196.23 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: