Experimental and numerical analysis of a water emptying pipeline using different air valves
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.creator | Coronado Hernández, Óscar Enrique | |
dc.creator | Fuertes Miquel, Vicente S. | |
dc.creator | Besharat M. | |
dc.creator | Ramos, H.M. | |
dc.date.accessioned | 2019-11-06T19:05:14Z | |
dc.date.available | 2019-11-06T19:05:14Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to install air valves in pipelines. However, if air valves are not adequately designed, then the risk in pipelines continues. In this research, a mathematical model is developed to simulate an emptying process in pipelines that can be used for planning this type of operation. The one-dimensional proposed model analyzes the water phase propagation by a new rigid model and the air pockets effect using thermodynamic formulations. The proposed model is validated through measurements of the air pocket absolute pressure, the water velocity and the length of the emptying columns in an experimental facility. Results show that the proposed model can accurately predict the hydraulic characteristic variables. © 2017 by the authors. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Water (Switzerland); Vol. 9, Núm. 2 | |
dc.identifier.doi | 10.3390/w9020098 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 2073-4441 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8740 | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85013031400&doi=10.3390%2fw9020098&partnerID=40&md5=c76ae6c3901c2952accd2f90e47f28ae | |
dc.source | Scopus 57193337460 | |
dc.source | Scopus 56074282700 | |
dc.source | Scopus 57205420202 | |
dc.source | Scopus 35568240000 | |
dc.subject.keywords | Air pocket | |
dc.subject.keywords | Air valve | |
dc.subject.keywords | Air-water | |
dc.subject.keywords | Emptying | |
dc.subject.keywords | Hydraulic model | |
dc.subject.keywords | Pipeline | |
dc.subject.keywords | Water hammer | |
dc.subject.keywords | Water supply | |
dc.subject.keywords | Hydraulic models | |
dc.subject.keywords | Pipelines | |
dc.subject.keywords | Water hammer | |
dc.subject.keywords | Water supply | |
dc.subject.keywords | Air pockets | |
dc.subject.keywords | Air valves | |
dc.subject.keywords | Air-water | |
dc.subject.keywords | Emptying | |
dc.subject.keywords | Experimental and numerical analysis | |
dc.subject.keywords | Hydraulic characteristic | |
dc.subject.keywords | Subatmospheric pressures | |
dc.subject.keywords | Thermodynamic formulation | |
dc.subject.keywords | Air | |
dc.subject.keywords | Distribution system | |
dc.subject.keywords | Equipment component | |
dc.subject.keywords | Experimental study | |
dc.subject.keywords | Hydraulic structure | |
dc.subject.keywords | Installation | |
dc.subject.keywords | Numerical method | |
dc.subject.keywords | Numerical model | |
dc.subject.keywords | Operations technology | |
dc.subject.keywords | Pipeline | |
dc.subject.keywords | Water supply | |
dc.title | Experimental and numerical analysis of a water emptying pipeline using different air valves | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | (2001) Manual ofWater Supply Practices-M51: Air-Release, Air-Vacuum, and Combination Air Valves, , 1st ed. | |
dcterms.bibliographicCitation | American Water Works Association: Denver, CO, USA | |
dcterms.bibliographicCitation | Ramezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2016) J. Water Resour. Plan. Manag., 141 | |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient phenomenon during the emptying process of a single pipe with water-air interaction. (2016) J. Hydraul. Res., , submitted | |
dcterms.bibliographicCitation | Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) J. Press. Vessel Technol., 138 | |
dcterms.bibliographicCitation | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vuckovíc, S., Hou, Q., Tijsseling, A., Van't Westende, J., Emptying of large-scale pipeline by pressurized air (2012) J. Hydraul. Eng., 138, pp. 1090-1100 | |
dcterms.bibliographicCitation | Fuertes, V.S., Hydraulic Transients with Entrapped Air Pockets. (2001) Ph.D. Thesis, Department of Hydraulic Engineering, , Polytechnic University of Valencia, Valencia, Spain | |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) J. Water Supply Res. Technol. AQUA, 65, pp. 116-126 | |
dcterms.bibliographicCitation | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines (2016) Water, 8, p. 25 | |
dcterms.bibliographicCitation | Balacco, G., Apollonio, C., Piccinni, A.F., Experimental Analysis of Air Valve Behaviour During Hydraulic Transients (2015) J. Appl. Water Eng. Res., 3, pp. 3-11 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) J. Hydraul. Eng., 139, pp. 949-959 | |
dcterms.bibliographicCitation | Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P., García-Serra, J., Pipeline start-up with entrapped air (1999) J. Hydraul. Res., 37, pp. 579-590 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Eng. Appl. Comput. Fluid Mech., 5, pp. 127-140 | |
dcterms.bibliographicCitation | Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C., CFD modeling of transient flow in pressurized pipes (2016) Comput. Fluids, 126, pp. 129-140 | |
dcterms.bibliographicCitation | Abreu, J., Cabrera, E., Izquierdo, J., García-Serra, J., Flow Modeling in Pressurized Systmes Revisited (1999) J. Hydraul. Eng., 125, pp. 1154-1169 | |
dcterms.bibliographicCitation | Martins, S.C., Ramos, H.M., Almeida, A.B., Mathematical Modeling of Pressurized System Behaviour with Entrapped Air. (2010) In Environmental Hydraulics: Theoretical, Experimental and Computational Solutions, pp. 61-64. , CRC Press: Boca Raton, FL, USA | |
dcterms.bibliographicCitation | Martins, S.C., Ramos, H.M., Almeida, A.B., Computational Evaluation of Hydraulic System Behaviour with Entrapped Air under Rapid Pressurization (2010) Integrating Water Systems, pp. 241-247. , CRC Press: Boca Raton, FL, USA | |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical modelling of pipelines with air pockets and air valves (2016) Can. J. Civ. Eng., 43, pp. 1052-1061 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Experimental investigation of entrapped air pocket in a partially full water pipe (2013) J. Hydraul. Res., 51, pp. 469-474 | |
dcterms.bibliographicCitation | Covas, D., Stoianov, I., Ramos, H.M., Graham, N., Maksimovi`c, C., Butler, D., Water hammer in pressurized polyethylene pipes:conceptual model and experimental analysis (2010) Urban Water J., 1, pp. 177-197 | |
dcterms.bibliographicCitation | Liou, C., Hunt, W.A., Filling of pipelines with undulating elevation profiles (1996) J. Hydraul. Eng., 122, pp. 534-539 | |
dcterms.bibliographicCitation | Bousso, S., Daynou, M., Fuamba, M., Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature (2013) J. Hydraul. Eng., 139, pp. 385-396 | |
dcterms.bibliographicCitation | Leon, A., Ghidaoui, M., Schmidt, A., Garcia, M., A robust two-equation model for transient-mixed flows (2010) J. Hydraul. Res., 48, pp. 44-56 | |
dcterms.bibliographicCitation | Wylie, E., Streeter, V., (1993) Fluid Transients in Systems, , Prentice Hall: Englewood Cliffs, NJ, USA | |
dcterms.bibliographicCitation | Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) J. Hydraul. Eng., 134, pp. 84-992 | |
dcterms.bibliographicCitation | Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of Liquid Length Variation in Hydraulic Transients (1992) J. Hydraul. Res., 118, pp. 1639-1650 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) J. Hydraul. Eng., 139, pp. 1041-1051 | |
dcterms.bibliographicCitation | Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual analogy for modelling entrapped air action in hydraulic systems (2015) J. Hydraul. Res., 53, pp. 678-686 | |
dcterms.bibliographicCitation | Martin, C.S., Entrapped Air in Pipelines. (1976) In Proceedings of the Second International Conference on Pressure Surges, , London, UK, 22-24 September | |
dcterms.bibliographicCitation | Iglesias-Rey, P.L., Fuertes-Miquel, V.S., García-Mares, F.J., Martínez-Solano, F.J., Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. (2014) In Proceedings of the 16th Conference on Water Distribution System Analysis, pp. 1412-1419. , WDSA 2014, Bari, Italy 14-17 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |
Files
Original bundle
1 - 1 of 1