A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorArias Amaya, Fabián
dc.creatorMalakhaltsev M.
dc.date.accessioned2020-03-26T16:32:37Z
dc.date.available2020-03-26T16:32:37Z
dc.date.issued2017
dc.description.abstractFor a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) is the index of V at z∈Z(V), and K is the curvature of g. We consider a locally trivial fiber bundle π:E→M over a compact oriented two-dimensional manifold M, and a section s of this bundle defined over M∖Σ, where Σ is a discrete subset of M called the set of singularities of the section. We assume that the behavior of the section s at the singularities is controlled in the following way: s(M∖Σ) coincides with the interior part of a surface S⊂E with boundary ∂S, and ∂S is π−1(Σ). For such sections s we define an index of s at a point of Σ, which generalizes in the natural way the index of zero of a vector field, and then prove that the sum of these indices at the points of Σ can be expressed as an integral over S of a 2-form constructed via a connection in E, thus we obtain a generalization of the GBHP formula. Also we consider branched sections with singularities, define an index of a branched section at a singular point, and find a generalization of the GBHP formula for the branched sections. © 2017eng
dc.description.notesThis investigation was supported by Vicerrector?a de Investigaciones and the Faculty of Sciences of Universidad de los Andes (Grant FAPA).
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of Geometry and Physics; Vol. 121, pp. 108-122
dc.identifier.doi10.1016/j.geomphys.2017.07.011
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.issn03930440
dc.identifier.orcid57195299684
dc.identifier.orcid6507151476
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8926
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026853352&doi=10.1016%2fj.geomphys.2017.07.011&partnerID=40&md5=6515fde524ff8a0f67f24afa94c152ab
dc.subject.keywordsBinary differential equation
dc.subject.keywordsBranched section
dc.subject.keywordsG-structure with singularities
dc.subject.keywordsIndex of singular point
dc.subject.keywordsSingularity of section
dc.titleA generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaArtículo
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. II (1996), p. xvi+468. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1969 original, a Wiley-Interscience Publication
dcterms.bibliographicCitationBott, R., Tu, L.W., Differential Forms in Algebraic Topology (1982), Springer New York
dcterms.bibliographicCitationBruce, J.W., Tari, F., On binary differential equations (1995) Nonlinearity, 8 (2), pp. 255-271
dcterms.bibliographicCitationBruce, J.W., Tari, F., Implicit differential equations from the singularity point of view (1996) Banach Center Publ., 33, pp. 23-38
dcterms.bibliographicCitationFukui, T., Nuño-Ballesteros, J.J., Isolated singularities of binary differential equations of degree $n$ (2012) Publ. Mat., 56, pp. 65-89
dcterms.bibliographicCitationChern, S.-S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds (1944) Ann. Mat., 45 (4), pp. 747-752
dcterms.bibliographicCitationArteaga B., J.R., Malakhaltsev, M., Trejos Serna, A.H., Isometry group and geodesics of the Wagner lift of a Riemannian metric on two-dimensional manifold (2012) Lobachevskii J. Math., 33 (4), pp. 293-311
dcterms.bibliographicCitationAgafonov, S.I., On implicit ODEs with hexagonal web of solutions (2009) J. Geom. Anal., 19, pp. 481-508
dcterms.bibliographicCitationArias, F.A., Arteaga B., J.R., Malakhaltsev, M.A., 3-webs with singularities (2016) Lobachevskii J. Math., 37 (1), pp. 1-20
dcterms.bibliographicCitationArtega B., J.R., Malakhaltsev, M.A., Symmetries of sub-Riemannian surfaces (2011) J. Geom. Phys., 61 (1), pp. 290-308
dcterms.bibliographicCitationKushner, A., Classification of mixed type Monge–Ampere equations (1994) Geometry in Partial Differential Equations, pp. 173-188. , World Scientific Pub Co Pte Lt
dcterms.bibliographicCitationGarcia, R., Sotomayor, J., Differential Equations of Classical Geometry, A Qualitative Theory (2009), IMPA
dcterms.bibliographicCitationKolár̆, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry (1993), p. vi + 434. , Berlin: Springer-Verlag
dcterms.bibliographicCitationKamber, F.W., Tondeur, P., Foliated Bundles and Characteristic Classes (1975), Springer Berlin Heidelberg
dcterms.bibliographicCitationBiswas, I., Flat partial connections on a three manifold equipped with a codimension one foliation (2000) Geom. Dedicata, 80 (1-3), pp. 65-72
dcterms.bibliographicCitationMichor, P., Topics in Differential Geometry (2008), Amer. Math. Soc
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I (1996), p. xii+329. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1963 original, a Wiley-Interscience Publication
dcterms.bibliographicCitationSharpe, R.W., Differential Geometry (2000), Springer
dcterms.bibliographicCitationDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part II. The Geometry and Topology of Manifolds (1985), Springer-Verlag
dcterms.bibliographicCitationDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part III. Introduction to Homology Theory (1990), Springer-Verlag
dcterms.bibliographicCitationSpivak, M., A Comprehensive Introduction to Differential Geometry. Vol. 1–5. Third ed. with corrections, Vol. 3 (1999), p. ix + 314. , third ed. Houston, TX: Publish or Perish
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files