Generative Adversarial Networks for Cell Segmentation in Human Corneal Endothelium

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorMendoza, Kevin D.
dc.contributor.authorSierra, Juan S
dc.contributor.authorTello, Alejandro
dc.contributor.authorGalvis, Virgilio
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMarrugo, Andrés G.
dc.date.accessioned2023-07-19T21:23:19Z
dc.date.available2023-07-19T21:23:19Z
dc.date.issued2022
dc.date.submitted2023
dc.description.abstractWe generate synthetic images with a generative adversarial network (GAN) model trained with image patches from specular microscopy corneal endothelial cells. Preliminary results show it may be a suitable approach for reliable cell segmentation. © 2022 The Author(s)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMendoza, K. D., Sierra, J. S., Tello, A., Galvis, V., Romero, L. A., & Marrugo, A. G. (2022, July). Generative Adversarial Networks for Cell Segmentation in Human Corneal Endothelium. In Imaging Systems and Applications (pp. ITh3D-3). Optica Publishing Groupspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12222
dc.identifier.urlhttps://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85139550660&origin=resultslist&sort=plf-f&src=s&sid=95182a388077e068fee69a2cc90d4eed&sot=b&sdt=b&s=TITLE-ABS-KEY%28Generative+Adversarial+Networks+for+Cell+Segmentation+in+Human+Corneal+Endothelium%29&sl=97&sessionSearchId=95182a388077e068fee69a2cc90d4eed
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptics InfoBase Conference Papersspa
dc.subject.armarcLEMB
dc.subject.keywordsCorneal Endothelium;spa
dc.subject.keywordsHexagonal Cells;spa
dc.subject.keywordsCapillary Endothelial Cellspa
dc.titleGenerative Adversarial Networks for Cell Segmentation in Human Corneal Endotheliumspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dcterms.bibliographicCitationMaurice, D.M. Cellular membrane activity in the corneal endothelium of the intact eye (1968) Experientia, 24 (11), pp. 1094-1095. Cited 191 times. doi: 10.1007/BF02147776spa
dcterms.bibliographicCitationScarpa, F., Ruggeri, A. Development of a reliable automated algorithm for the morphometric analysis of human corneal endothelium (2016) Cornea, 35 (9), pp. 1222-1228. Cited 25 times. http://journals.lww.com/corneajrnl/pages/default.aspx doi: 10.1097/ICO.0000000000000908spa
dcterms.bibliographicCitationFabijańska, Anna Segmentation of corneal endothelium images using a u-net-based cnn (2018) AI in medicine, 88.spa
dcterms.bibliographicCitationNurzynska, K. Deep learning as a tool for automatic segmentation of corneal endothelium images (Open Access) (2018) Symmetry, 10 (3), art. no. 60. Cited 24 times. https://res.mdpi.com/symmetry/symmetry-10-00060/article_deploy/symmetry-10-00060.pdf?filename=&attachment=1 doi: 10.3390/SYM10030060spa
dcterms.bibliographicCitationSierra, J.S., Pineda, J., Viteri, E., Rueda, D., Tibaduiza, B., Berrospi, R.D., Tello, A., (...), Marrugo, A.G. Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks (2020) Proceedings of SPIE - The International Society for Optical Engineering, 11511, art. no. 115110H. Cited 6 times. http://spie.org/x1848.xml ISBN: 978-151063828-0 doi: 10.1117/12.2569258spa
dcterms.bibliographicCitationRonneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical image segmentation (Open Access) (2015) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, pp. 234-241. Cited 37955 times. http://springerlink.com/content/0302-9743/copyright/2005/ ISBN: 978-331924573-7 doi: 10.1007/978-3-319-24574-4_28spa
dcterms.bibliographicCitationSierra, J.S., Pineda, J., Viteri, E., Tello, A., Millán, M.S., Galvis, V., Romero, L.A., (...), Marrugo, A.G. Generating density maps for convolutional neural network-based cell counting in specular microscopy images (Open Access) (2020) Journal of Physics: Conference Series, 1547 (1), art. no. 012019. Cited 6 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1547/1/012019spa
dcterms.bibliographicCitationIsola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, Efros, Alexei A Image-to-image translation with conditional adversarial networks (2017) Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134. Cited 3130 times.spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Scopus - Document details - Generative Adversarial Networks for Cell Segmentation in Human Corneal Endothelium.pdf
Size:
174.82 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: