Exergy study of air-conditioned space of a prototype scale of a river vessel room
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Fajardo Cuadro, Juan Gabriel | |
dc.creator | Guerra M.A. | |
dc.creator | Sarria B. | |
dc.creator | Cruz O. | |
dc.date.accessioned | 2020-03-26T16:32:44Z | |
dc.date.available | 2020-03-26T16:32:44Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME. | eng |
dc.description.sponsorship | American Society of Mechanical Engineers (ASME) | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016 | |
dc.identifier.doi | 10.1115/IMECE2016-65093 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9780791850596 | |
dc.identifier.orcid | 56581610900 | |
dc.identifier.orcid | 57194727134 | |
dc.identifier.orcid | 56581727500 | |
dc.identifier.orcid | 57194716721 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8996 | |
dc.language.iso | eng | |
dc.publisher | American Society of Mechanical Engineers (ASME) | |
dc.relation.conferencedate | 11 November 2016 through 17 November 2016 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fc | |
dc.source | Scopus2-s2.0-85021784501 | |
dc.source.event | ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 | |
dc.subject.keywords | Air conditioning | |
dc.subject.keywords | Thermal load | |
dc.subject.keywords | Air-conditioned spaces | |
dc.subject.keywords | Exergetic efficiency | |
dc.subject.keywords | Exergy destructions | |
dc.subject.keywords | Per unit | |
dc.subject.keywords | Exergy | |
dc.title | Exergy study of air-conditioned space of a prototype scale of a river vessel room | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | Hongmin, L., Simulation and Optimization of Indoor Thermal Environment in a Ship Airconditioning System (2011) Procedia Environmental Sciences, 11, pp. 1055-1063 | |
dcterms.bibliographicCitation | Yu, J., Tian, L., Xu, X., Wang, J., Evaluation on energy and thermal performance for office building envelope in different climate zones of China (2015) Energy and Buildings, 86, pp. 626-639 | |
dcterms.bibliographicCitation | Lei, J., Yangb, J., Yang, E.-H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore (2016) Applied Energy, 162 (15), pp. 207-217 | |
dcterms.bibliographicCitation | Acero, J.A., Herranz-Pascual, K., A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques (2015) Building and Environment, 93, pp. 245-257 | |
dcterms.bibliographicCitation | Puangmaleea, N., Hussaroa, K., Boonyayothinc, V., Khedaria, J., A Field of the Thermal Comfort in University Buildings in Thailand under Air Condition Room (2015) Energy Procedia, 79, pp. 480-485 | |
dcterms.bibliographicCitation | Ally, M.R., Munk, J.D., Baxter, V.D., Gehl, A.C., Exergy analysis and operational efficiency of a horizontal ground-source heat pump system operated in a low-energy test house under simulated occupancy conditions5 (2012) International Journal of Refrigeration, 35 (4), pp. 1092-1103 | |
dcterms.bibliographicCitation | Schmidt, D., Low exergy systems for high-performance buildings and communities (2009) Energy and Buildings, 41, pp. 331-336 | |
dcterms.bibliographicCitation | Sakulpipatsin, P., Itard, L., An exergy applications for an analys of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99 | |
dcterms.bibliographicCitation | Schmidt, D., Ala-Juusela, M., (2004) Low Exergy Systems for Heating and Cooling of Buildings | |
dcterms.bibliographicCitation | Ali, M., Vukovica, V., Sahirb, M.H., Fontanellaa, G., Energy analysis of chilled water system configurations using simulation-based optimization (2013) Energy and Buildings, 59, pp. 111-122 | |
dcterms.bibliographicCitation | Inard, C., Rutman, E., Bailly, A., Allard, F., A global approach of indoor environment in an air-conditioned office room (2005) Building and Environment, 40, pp. 29-37 | |
dcterms.bibliographicCitation | Duret, S., Hoang, H.-M., Flick, D., Laguerre, O., Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products (2014) International Journal of Refrigeration, 46, pp. 17-25 | |
dcterms.bibliographicCitation | Streeter, V.L., Wylie, E.B., Bedford, K.W., (2000) Fluid Mechanics, , USA: McGraw Hill | |
dcterms.bibliographicCitation | Cengel, Y.A., Boles, M.A., (2010) Thermodynamics, , USA | |
dcterms.bibliographicCitation | Keçebas, A., Yabanova, I., Yumurtaci, M., Artificial neural network modeling of geothermal district heating system thought (2012) Energy Conversion and Management, 64, pp. 206-212 | |
dcterms.bibliographicCitation | Fudholi, A., Sopian, K., Othman, M.Y., Mohd, H.R., Energy and exergy analyses of solar drying system of red seaweed (2014) Energy and Buildings, 68, pp. 121-129 | |
dcterms.bibliographicCitation | Taghavifar, H., Anvari, S., Saray, R.K., Khalilarya, S., Jafarmadar, S., Taghavifar, H., Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components (2015) Applied Thermal Engineering, 89, pp. 156-168 | |
dcterms.bibliographicCitation | Sakulpipatsin, P., (2008) Exergy Efficient Building Design, , Delft: Technische Universiteit Delft | |
dcterms.bibliographicCitation | (2005) Fundamentals Handbook, , ASHRAE, USA: ASHRAE | |
dcterms.bibliographicCitation | (2002) Guide for Crew Hability on Ships, , ABS, Houston: ABS | |
dcterms.bibliographicCitation | Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & Sons | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |