Exergy study of air-conditioned space of a prototype scale of a river vessel room

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorFajardo Cuadro, Juan Gabriel
dc.creatorGuerra M.A.
dc.creatorSarria B.
dc.creatorCruz O.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2016
dc.description.abstractThe study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME.eng
dc.description.sponsorshipAmerican Society of Mechanical Engineers (ASME)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citationASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016
dc.identifier.doi10.1115/IMECE2016-65093
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9780791850596
dc.identifier.orcid56581610900
dc.identifier.orcid57194727134
dc.identifier.orcid56581727500
dc.identifier.orcid57194716721
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8996
dc.language.isoeng
dc.publisherAmerican Society of Mechanical Engineers (ASME)
dc.relation.conferencedate11 November 2016 through 17 November 2016
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fc
dc.sourceScopus2-s2.0-85021784501
dc.source.eventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
dc.subject.keywordsAir conditioning
dc.subject.keywordsThermal load
dc.subject.keywordsAir-conditioned spaces
dc.subject.keywordsExergetic efficiency
dc.subject.keywordsExergy destructions
dc.subject.keywordsPer unit
dc.subject.keywordsExergy
dc.titleExergy study of air-conditioned space of a prototype scale of a river vessel room
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitationHongmin, L., Simulation and Optimization of Indoor Thermal Environment in a Ship Airconditioning System (2011) Procedia Environmental Sciences, 11, pp. 1055-1063
dcterms.bibliographicCitationYu, J., Tian, L., Xu, X., Wang, J., Evaluation on energy and thermal performance for office building envelope in different climate zones of China (2015) Energy and Buildings, 86, pp. 626-639
dcterms.bibliographicCitationLei, J., Yangb, J., Yang, E.-H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore (2016) Applied Energy, 162 (15), pp. 207-217
dcterms.bibliographicCitationAcero, J.A., Herranz-Pascual, K., A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques (2015) Building and Environment, 93, pp. 245-257
dcterms.bibliographicCitationPuangmaleea, N., Hussaroa, K., Boonyayothinc, V., Khedaria, J., A Field of the Thermal Comfort in University Buildings in Thailand under Air Condition Room (2015) Energy Procedia, 79, pp. 480-485
dcterms.bibliographicCitationAlly, M.R., Munk, J.D., Baxter, V.D., Gehl, A.C., Exergy analysis and operational efficiency of a horizontal ground-source heat pump system operated in a low-energy test house under simulated occupancy conditions5 (2012) International Journal of Refrigeration, 35 (4), pp. 1092-1103
dcterms.bibliographicCitationSchmidt, D., Low exergy systems for high-performance buildings and communities (2009) Energy and Buildings, 41, pp. 331-336
dcterms.bibliographicCitationSakulpipatsin, P., Itard, L., An exergy applications for an analys of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99
dcterms.bibliographicCitationSchmidt, D., Ala-Juusela, M., (2004) Low Exergy Systems for Heating and Cooling of Buildings
dcterms.bibliographicCitationAli, M., Vukovica, V., Sahirb, M.H., Fontanellaa, G., Energy analysis of chilled water system configurations using simulation-based optimization (2013) Energy and Buildings, 59, pp. 111-122
dcterms.bibliographicCitationInard, C., Rutman, E., Bailly, A., Allard, F., A global approach of indoor environment in an air-conditioned office room (2005) Building and Environment, 40, pp. 29-37
dcterms.bibliographicCitationDuret, S., Hoang, H.-M., Flick, D., Laguerre, O., Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products (2014) International Journal of Refrigeration, 46, pp. 17-25
dcterms.bibliographicCitationStreeter, V.L., Wylie, E.B., Bedford, K.W., (2000) Fluid Mechanics, , USA: McGraw Hill
dcterms.bibliographicCitationCengel, Y.A., Boles, M.A., (2010) Thermodynamics, , USA
dcterms.bibliographicCitationKeçebas, A., Yabanova, I., Yumurtaci, M., Artificial neural network modeling of geothermal district heating system thought (2012) Energy Conversion and Management, 64, pp. 206-212
dcterms.bibliographicCitationFudholi, A., Sopian, K., Othman, M.Y., Mohd, H.R., Energy and exergy analyses of solar drying system of red seaweed (2014) Energy and Buildings, 68, pp. 121-129
dcterms.bibliographicCitationTaghavifar, H., Anvari, S., Saray, R.K., Khalilarya, S., Jafarmadar, S., Taghavifar, H., Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components (2015) Applied Thermal Engineering, 89, pp. 156-168
dcterms.bibliographicCitationSakulpipatsin, P., (2008) Exergy Efficient Building Design, , Delft: Technische Universiteit Delft
dcterms.bibliographicCitation(2005) Fundamentals Handbook, , ASHRAE, USA: ASHRAE
dcterms.bibliographicCitation(2002) Guide for Crew Hability on Ships, , ABS, Houston: ABS
dcterms.bibliographicCitationBejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & Sons
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files