Linear power flow formulation for low-voltage DC power grids
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Montoya O.D. | |
dc.creator | Grisales-Noreña L.F. | |
dc.creator | González-Montoya D. | |
dc.creator | Ramos-Paja C.A. | |
dc.creator | Garces A. | |
dc.date.accessioned | 2020-03-26T16:32:31Z | |
dc.date.available | 2020-03-26T16:32:31Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative conditions. The proposed approach provides an explicit solution of the power flow equations system, which avoids the use of iterative methods. Such a characteristic enables to provide accurate results with very short processing times when real operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those simulations were performed using C++ and MATLAB, which are programming environments commonly adopted to solve power flows. © 2018 Elsevier B.V. | eng |
dc.description.notes | This work was supported by Universidad Tecnológica de Bolivar , Universidad Tecnológica de Pereira , Instituto Tecnológico Metropolitano , Universidad Nacional de Colombia and COLCIENCIAS under the research projects P-17211 and UNAL-ITM-39823 and the Doctoral Scholarship 727-2015. Moreover, this work was also supported by the PhD program in Engineering of the Universidad Tecnológica de Pereira and the Ph.D. program “Doctorado en Ingeniería – Línea de Investigación en Automática” of the Universidad Nacional de Colombia. | |
dc.description.sponsorship | Universidad Nacional de Colombia Universidad Tecnológica Nacional Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: P-17211, UNAL-ITM-39823 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Electric Power Systems Research; Vol. 163, pp. 375-381 | |
dc.identifier.doi | 10.1016/j.epsr.2018.07.003 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 03787796 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 55791991200 | |
dc.identifier.orcid | 57202996445 | |
dc.identifier.orcid | 22836502400 | |
dc.identifier.orcid | 36449223500 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8865 | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050132713&doi=10.1016%2fj.epsr.2018.07.003&partnerID=40&md5=3823f68cab40910397b872622d6ee94c | |
dc.subject.keywords | Convex approximation | |
dc.subject.keywords | Linear approximation | |
dc.subject.keywords | Low-voltage dc power grids | |
dc.subject.keywords | Nonlinear power flow equations | |
dc.subject.keywords | Taylor's series expansion | |
dc.subject.keywords | C++ (programming language) | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Iterative methods | |
dc.subject.keywords | MATLAB | |
dc.subject.keywords | Nonlinear equations | |
dc.subject.keywords | Numerical methods | |
dc.subject.keywords | Taylor series | |
dc.subject.keywords | Convex approximation | |
dc.subject.keywords | Linear approximations | |
dc.subject.keywords | Low voltages | |
dc.subject.keywords | Nonlinear power flow | |
dc.subject.keywords | Taylor's series expansion | |
dc.subject.keywords | Electric power transmission networks | |
dc.title | Linear power flow formulation for low-voltage DC power grids | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electr. Power Syst. Res., 119, pp. 407-417 | |
dcterms.bibliographicCitation | Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925 | |
dcterms.bibliographicCitation | Sreedharan, P., Farbes, J., Cutter, E., Woo, C.K., Wang, J., Microgrid and renewable generation integration: University of California, San Diego (2016) Appl. Energy, 169, pp. 709-720 | |
dcterms.bibliographicCitation | Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153 | |
dcterms.bibliographicCitation | Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31, pp. 827-828 | |
dcterms.bibliographicCitation | Machado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Trans. Circuits Syst. I: Regul. Pap., 64, pp. 2772-2782 | |
dcterms.bibliographicCitation | Dragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids – Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31, pp. 4876-4891 | |
dcterms.bibliographicCitation | IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems, IEEE Std 1547.4-2011 (2011), pp. 1-54 | |
dcterms.bibliographicCitation | Justo, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: a review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405 | |
dcterms.bibliographicCitation | Belkhayat, M., Cooley, R., Abed, E.H., Stability and dynamics of power systems with regulated converters (1995) 1995 IEEE International Symposium on Circuits and Systems, 1995, ISCAS ‘95, vol. 1, pp. 143-145 | |
dcterms.bibliographicCitation | Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P., DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy (2014) IEEE J. Emerg. Sel. Top. Power Electron., 2, pp. 1171-1180 | |
dcterms.bibliographicCitation | Ma, J., Yuan, L., Zhao, Z., He, F., Transmission loss optimization-based optimal power flow strategy by hierarchical control for dc microgrids (2017) IEEE Trans. Power Electron., 32, pp. 1952-1963 | |
dcterms.bibliographicCitation | Garces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1 | |
dcterms.bibliographicCitation | Buire, J., Guillaud, X., Colas, F., Dieulot, J.Y., Alvaro, L.D., Combination of linear power flow tools for voltages and power estimation on MV networks (2017) CIRED Open Access Proc. J., 2017, pp. 2157-2160 | |
dcterms.bibliographicCitation | Maknouninejad, A., Qu, Z., Lewis, F.L., Davoudi, A., Optimal, nonlinear, and distributed designs of droop controls for DC microgrids (2014) IEEE Trans. Smart Grid, 5, pp. 2508-2516 | |
dcterms.bibliographicCitation | Frank, S., Steponavice, I., Rebennack, S., Optimal power flow: a bibliographic survey II (2012) Energy Syst., 3, pp. 259-289 | |
dcterms.bibliographicCitation | Gandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renew. Energy, 111, pp. 275-283 | |
dcterms.bibliographicCitation | Kumar, Y.V.P., Bhimasingu, R., Electrical machines based dc/ac energy conversion schemes for the improvement of power quality and resiliency in renewable energy microgrids (2017) Int. J. Electr. Power Energy Syst., 90, pp. 10-26 | |
dcterms.bibliographicCitation | Meng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M., Review on control of dc microgrids and multiple microgrid clusters (2017) IEEE J. Emerg. Sel. Top. Power Electron., 5, pp. 928-948 | |
dcterms.bibliographicCitation | Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8, pp. 2754-2764 | |
dcterms.bibliographicCitation | Huang, S., Wu, Q., Zhao, H., Liu, Z., Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables (2016) Energy Proc., 100, pp. 1-7. , 3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8–10 September 2016, Kitakyushu, Japan | |
dcterms.bibliographicCitation | Garces, A., Montoya, D., Torres, R., Garces et al., 2016 (2016) Optimal power flow in multiterminal hvdc systems considering dc/dc converters, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217 | |
dcterms.bibliographicCitation | Barabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I: Regul. Pap., 63, pp. 114-121 | |
dcterms.bibliographicCitation | de Moura, A.P., de Moura, A.A., Oliveira, D., Fernandes, E., Linear power flow V-theta (2012) Electr. Power Syst. Res., 84, pp. 45-57 | |
dcterms.bibliographicCitation | Wang, Y., Zhang, N., Li, H., Yang, J., Kang, C., Linear three-phase power flow for unbalanced active distribution networks with pv nodes (2017) CSEE J. Power Energy Syst., 3, pp. 321-324 | |
dcterms.bibliographicCitation | Hörsch, J., Ronellenfitsch, H., Witthaut, D., Brown, T., Linear optimal power flow using cycle flows (2018) Electr. Power Syst. Res., 158, pp. 126-135 | |
dcterms.bibliographicCitation | Di Fazio, A.R., Russo, M., Valeri, S., De Santis, M., Linear method for steady-state analysis of radial distribution systems (2018) Int. J. Electr. Power Energy Syst., 99, pp. 744-755 | |
dcterms.bibliographicCitation | Marti, J., Ahmadi, H., Bashualdo, L., Linear power flow formulation based on a voltage-dependent load model (2014) 2014 IEEE PES General Meeting – Conference Exposition, p. 1 | |
dcterms.bibliographicCitation | Zhang, H., Vittal, V., Heydt, G.T., Quintero, J., A relaxed ac optimal power flow model based on a Taylor series (2013) 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 1-5 | |
dcterms.bibliographicCitation | Wang, W., Barnes, M., Power flow algorithms for multi-terminal VSC-HVDC with droop control (2014) IEEE Trans. Power Syst., 29, pp. 1721-1730 | |
dcterms.bibliographicCitation | Luo, Z.Q., Ma, W.K., So, A.M.C., Ye, Y., Zhang, S., Semidefinite relaxation of quadratic optimization problems (2010) IEEE Signal Process. Mag., 27, pp. 20-34 | |
dcterms.bibliographicCitation | Guimaraes, D.A., Floriano, G.H.F., Chaves, L.S., A tutorial on the CVX system for modeling and solving convex optimization problems (2015) IEEE Latin Am. Trans., 13, pp. 1228-1257 | |
dcterms.bibliographicCitation | Huang, G., Ongsakul, W., Managing the bottlenecks in parallel Gauss–Seidel type algorithms for power flow analysis (1994) IEEE Trans. Power Syst., 9, pp. 677-684 | |
dcterms.bibliographicCitation | Zeng, J., Lin, J., Wang, Z., An improved Gauss–Seidel algorithm and its efficient architecture for massive mimo systems (2018) IEEE Trans. Circuits Syst. II: Express Briefs, p. 1 | |
dcterms.bibliographicCitation | Abdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and microgrids (2017) Renew. Sustain. Energy Rev., 71, pp. 742-766 | |
dcterms.bibliographicCitation | Zhou, E.Z., Object-oriented programming, C++ and power system simulation (1996) IEEE Trans. Power Syst., 11, pp. 206-215 | |
dcterms.bibliographicCitation | Pandit, S., Soman, S.A., Khaparde, S.A., Design of generic direct sparse linear system solver in C++ for power system analysis (2001) IEEE Trans. Power Syst., 16, pp. 647-652 | |
dcterms.bibliographicCitation | Rebizant, W., Solak, K., Brusilowicz, B., Benysek, G., Kempski, A., Rusinski, J., Coordination of overcurrent protection relays in networks with superconducting fault current limiters (2018) Int. J. Electr. Power Energy Syst., 95, pp. 307-314 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0378779618301962-main.pdf
- Size:
- 434.53 KB
- Format:
- Adobe Portable Document Format
- Description: