Rigid water column model for simulating the emptying process in a pipeline using pressurized air
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Coronado Hernández, Óscar Enrique | |
dc.creator | Fuertes Miquel, Vicente S. | |
dc.creator | Iglesias-Rey P.L. | |
dc.creator | Martínez-Solano F.J. | |
dc.date.accessioned | 2020-03-26T16:32:33Z | |
dc.date.available | 2020-03-26T16:32:33Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed model. The proposed model is applied along a 271.6-m-long PVC-steel pipeline with a 232-mm internal diameter. The boundary conditions are given by a high-pressure air tank at the upstream end and a manual butterfly valve at the downstream end. The solution was carried out in a computer modeling program. The results show that comparisons between both the computed and measured water flow oscillations and gauge pressures are very similar; hence, the model can effectively simulate the transient flow in this system. In addition, the results indicate that the proposed model can predict both the water flow and gauge pressure better than previous models. © 2018 American Society of Civil Engineers. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Journal of Hydraulic Engineering; Vol. 144, Núm. 4 | |
dc.identifier.doi | 10.1061/(ASCE)HY.1943-7900.0001446 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 07339429 | |
dc.identifier.orcid | 57193337460 | |
dc.identifier.orcid | 56074282700 | |
dc.identifier.orcid | 15220062200 | |
dc.identifier.orcid | 15220688300 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8886 | |
dc.language.iso | eng | |
dc.publisher | American Society of Civil Engineers (ASCE) | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041448605&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001446&partnerID=40&md5=46e64b7aa6e2641126ad79016ddf298e | |
dc.subject.keywords | Air-water interface | |
dc.subject.keywords | Pipelines emptying | |
dc.subject.keywords | Pressurized air | |
dc.subject.keywords | Transient flow | |
dc.subject.keywords | Water distribution system | |
dc.subject.keywords | Air | |
dc.subject.keywords | Flow of water | |
dc.subject.keywords | Gages | |
dc.subject.keywords | Hydraulics | |
dc.subject.keywords | Phase interfaces | |
dc.subject.keywords | Pipelines | |
dc.subject.keywords | Polyvinyl chlorides | |
dc.subject.keywords | Transition flow | |
dc.subject.keywords | Water distribution systems | |
dc.subject.keywords | Water supply systems | |
dc.subject.keywords | Air water interfaces | |
dc.subject.keywords | Computer modeling programs | |
dc.subject.keywords | High pressure air | |
dc.subject.keywords | Internal diameters | |
dc.subject.keywords | Pressurized air | |
dc.subject.keywords | Transient flow | |
dc.subject.keywords | Transient phenomenon | |
dc.subject.keywords | Water column models | |
dc.subject.keywords | Rivers | |
dc.subject.keywords | Air-water interaction | |
dc.subject.keywords | Boundary condition | |
dc.subject.keywords | Computer simulation | |
dc.subject.keywords | Flow field | |
dc.subject.keywords | Hydraulics | |
dc.subject.keywords | Interface | |
dc.subject.keywords | Numerical model | |
dc.subject.keywords | Pipe flow | |
dc.subject.keywords | Pipeline | |
dc.subject.keywords | Pressure field | |
dc.subject.keywords | Transient flow | |
dc.subject.keywords | Water column | |
dc.title | Rigid water column model for simulating the emptying process in a pipeline using pressurized air | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of liquid length variation in hydraulic transients (1992) J. Hydraul. Res., pp. 1639-1650 | |
dcterms.bibliographicCitation | Fuertes, V.S., Hydraulic transients with entrapped air pockets (2001) Ph. D. thesis, , Polytechnic Univ. of Valencia, València, Spain | |
dcterms.bibliographicCitation | Hou, Q., Experimental study of filling and emptying of a large-scale pipeline (2012), CASA-Rep., Technische Universiteit Eindhoven, Eindhoven, Netherlands | |
dcterms.bibliographicCitation | Izquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline start-up with entrapped air (1999) J. Hydraul. Res., 37 (5), pp. 579-590 | |
dcterms.bibliographicCitation | Karadžić, U., Strunjaš, F., Bergant, A., Mavric, R., Buckstein, S., Developments in pipeline filling and emptying experimentation in a laboratory pipeline apparatus (2015), pp. 273-280. , Proc., 6th IAHR Meeting on WG Cavitation and Dynamic Problems (Ljubljana) (Novo Mesto), International Association for Hydraulic Research, Ljubljana, Slovenia | |
dcterms.bibliographicCitation | Koppel, T., Laanearu, J., Annus, I., Raidmaa, M., Using transient flow equations for modelling of filling and emptying of large-scale pipeline (2010) 12th Annual Conf. on Water Distribution Systems Analysis (WDSA), pp. 112-121. , ASCE, Reston, VA | |
dcterms.bibliographicCitation | Laanearu, J., Emptying of large-scale pipeline by pressurized air (2012) J. Hydraul. Eng., pp. 1090-1100 | |
dcterms.bibliographicCitation | Laanearu, J., Hou, Q., Annus, I., Tijsseling, A.S., Watercolumn mass losses during the emptying of a large-scale pipeline by pressurized air (2015) Proc. Est. Acad. Sci., 64 (1), p. 8 | |
dcterms.bibliographicCitation | Laanearu, J., Van't Westende, J., Hydraulic characteristics of test rig used in filling and emptying experiments of large-scalePVCpipeline (2010) Proc., HYDRALAB III Joint User Meeting, Forschungszentrum Küste FZK (Coastal Research Centre FZK), , Univ. of Hannover, Hannover, Germany | |
dcterms.bibliographicCitation | Liou, C., Hunt, W., Filling of pipelines with undulating elevation profiles (1996) J. Hydraul. Eng., 122 (10), pp. 534-539. , 534 | |
dcterms.bibliographicCitation | Computer software, , MathWorks, Naticks, MA | |
dcterms.bibliographicCitation | Pothof, I., Clemens, F., On elongated air pockets in downward sloping pipes (2010) J. Hydraul. Res., 48 (4), pp. 499-503 | |
dcterms.bibliographicCitation | Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) J. Pressure Vessel Technol., 138 (3) | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) J. Hydraul. Eng., pp. 949-959 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) J. Hydraul. Eng., pp. 1041-1051 | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Eng. Appl. Comput. Fluid Mech., 5 (1), pp. 127-140 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |