Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.contributor.editorOrjuela-Canon A.D.
dc.creatorÁlvarez Almeida L.A.
dc.creatorCarlos Martinez Santos J.
dc.date.accessioned2020-03-26T16:33:02Z
dc.date.available2020-03-26T16:33:02Z
dc.date.issued2019
dc.description.abstractThe integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attacks like Denial of Service attacks. In this article, we will use all the attributes of the data-set NSL-KDD to train and test a Support Vector Machine model. This model will then be applied to a method of feature selection to obtain the most relevant attributes within the aforementioned data-set and train the model again. The main goal is comparing the results obtained in both instances of training and validate which was more efficient. © 2019 IEEE.eng
dc.description.sponsorshipEEE Colombia Section;EEE Colombian Caribbean Section;IEEE Computational Intelligence Colombian Chapter;IEEE Computational Intelligence Society
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings
dc.identifier.doi10.1109/ColCACI.2019.8781803
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781728116143
dc.identifier.orcid57210565161
dc.identifier.orcid26325154200
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9137
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate5 June 2019 through 7 June 2019
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070855791&doi=10.1109%2fColCACI.2019.8781803&partnerID=40&md5=e5847944721efd67a906bd5aaabba5f9
dc.sourceScopus2-s2.0-85070855791
dc.source.event2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019
dc.subject.keywordsClassification model
dc.subject.keywordsData set
dc.subject.keywordsDos Attacks
dc.subject.keywordsFeature selection
dc.subject.keywordsMachine learning
dc.subject.keywordsSupport vector machine
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsClassification (of information)
dc.subject.keywordsDenial-of-service attack
dc.subject.keywordsIntrusion detection
dc.subject.keywordsLearning systems
dc.subject.keywordsNetwork security
dc.subject.keywordsStatistical tests
dc.subject.keywordsSupport vector machines
dc.subject.keywordsClassification models
dc.subject.keywordsCyber-attacks
dc.subject.keywordsData set
dc.subject.keywordsFeatures selection
dc.subject.keywordsIntrusion Detection Systems
dc.subject.keywordsSupport vector machine models
dc.subject.keywordsFeature extraction
dc.titleEvaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitation(1999) Canadian Institute for Cybersecurity, , nsl-kdd Dataset
dcterms.bibliographicCitationDhanabal, L., Shantharajah, S.P., A study on nsl-kdd dataset for intrusion detection system based on classification algorithms (2015) International Journal of Advanced Research in Computer and Communication Engineering, 4 (6), pp. 446-452
dcterms.bibliographicCitationFakieh, K., Survey on ddos attacks prevention and detection in cloud (2016) International Journal of Applied Information Systems, 12
dcterms.bibliographicCitationFayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Communications of the ACM, 39 (11), pp. 27-34
dcterms.bibliographicCitationGyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) International Journal of Scientific and Research Publications, 2 (12), pp. 1-13
dcterms.bibliographicCitationKaur, P., Kumar, M., Bhandari, A., A review of detection approaches for distributed denial of service attacks (2017) Systems Science & Control Engineering, 5 (1), pp. 301-320. , January
dcterms.bibliographicCitationMarkou, M., Singh, S., Novelty detection: A reviewpart 2: Neural network based approaches (2003) Signal Processing, 83 (12), pp. 2499-2521
dcterms.bibliographicCitationMeti, N., Narayan, D.G., Baligar, V.P., Detection of distributed denial of service attacks using machine learning algorithms in software defined networks. In (2017) 2017 International Conference on Advances in Computing Communications and Informatics (ICACCI, pp. 1366-1371
dcterms.bibliographicCitationParsaei, M.R., Rostami, S.M., Javidan, R., A hybrid data mining approach for intrusion detection on imbalanced nsl-kdd dataset (2016) International Journal of Advanced Computer Science and Applications, 7 (6), pp. 20-25
dcterms.bibliographicCitationPatcha, A., Park, J.-M., An overview of anomaly detection techniques: Existing solutions and latest technological trends (2007) Computer Networks, 51 (12), pp. 3448-3470
dcterms.bibliographicCitationBoddula, N., Kalime, S., A study on detection of distributed denial of service attacks using machine learning techniques (2018) International Journal of Research, p. 10
dcterms.bibliographicCitationZargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks (2013) IEEE Communications Surveys & Tutorials, 15 (4), pp. 2046-2069
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files