CFD and 1D simulation of transient flow effect on air vessel
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Besharat M. | |
dc.creator | Coronado Hernández, Óscar Enrique | |
dc.creator | Fuertes Miquel, Vicente S. | |
dc.creator | Viseu M.T. | |
dc.creator | Ramos H.M. | |
dc.date.accessioned | 2020-03-26T16:32:36Z | |
dc.date.available | 2020-03-26T16:32:36Z | |
dc.date.issued | 2018 | |
dc.description.abstract | The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost all of them are not suitable for two-phase flows. In this research, an experimental apparatus including valves, pipes and an air vessel is used to fulfil the experiments. A mathematical formulation and a two-dimensional computational fluid dynamics (2D CFD) model have been used to predict the extreme conditions. Results show that 1D model is able to predict pressure values with acceptable accuracy. However, the 2D CFD model can be used to detect the specialized problems in a system by providing very high range of the information. © BHR Group 2018 Pressure Surges 13 | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | 13th International Conference on Pressure Surges; Vol. 1, pp. 73-85 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9780000000002 | |
dc.identifier.orcid | 57205420202 | |
dc.identifier.orcid | 57193337460 | |
dc.identifier.orcid | 56074282700 | |
dc.identifier.orcid | 57193113023 | |
dc.identifier.orcid | 35568240000 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8924 | |
dc.language.iso | eng | |
dc.publisher | BHR Group Limited | |
dc.relation.conferencedate | 14 November 2018 through 16 November 2018 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059024875&partnerID=40&md5=5ff92a0e82027242be659740d33e42a5 | |
dc.source.event | 13th International Conference on Pressure Surges | |
dc.subject.keywords | Air vessel | |
dc.subject.keywords | CFD | |
dc.subject.keywords | Pressure surge | |
dc.subject.keywords | Water hammer | |
dc.subject.keywords | Computational fluid dynamics | |
dc.subject.keywords | Estimation | |
dc.subject.keywords | Hydraulic equipment | |
dc.subject.keywords | One dimensional | |
dc.subject.keywords | Water hammer | |
dc.subject.keywords | Air vessel | |
dc.subject.keywords | Experimental apparatus | |
dc.subject.keywords | Extreme conditions | |
dc.subject.keywords | Hydraulic system | |
dc.subject.keywords | Mathematical formulation | |
dc.subject.keywords | Monophasic flow | |
dc.subject.keywords | Pressure surges | |
dc.subject.keywords | Pressure values | |
dc.subject.keywords | Two phase flow | |
dc.title | CFD and 1D simulation of transient flow effect on air vessel | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) Journal of Hydraulic Engineering, 139, pp. 1041-1051 | |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply Resources Technology-Aqua, 65, pp. 116-126 | |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702 | |
dcterms.bibliographicCitation | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water, 8, p. 25 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9, p. 98 | |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2018) Journal of Hydraulic Research | |
dcterms.bibliographicCitation | Stephenson, D., Simple guide for design of air vessels for water hammer protection on pumping lines (2002) Journal of Hydraulic Engineering, 128, pp. 792-797 | |
dcterms.bibliographicCitation | Besharat, M., Viseu, M.T., Ramos, H.M., Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence (2017) Water, 9 (1), p. 63 | |
dcterms.bibliographicCitation | Ruus, E., Karney, B., (1997) Applied Hydraulic Transients, , Friesens Corporation: Altona, MB, Canada | |
dcterms.bibliographicCitation | Izquierdo, J., Lopez, P.A., Lopez, G., Martinez, F.J., Perez, R., Encapsulation of air vessel design in a neural network (2006) Applied Mathematical Modelling, 30, pp. 395-405 | |
dcterms.bibliographicCitation | De Martino, G., Fontana, N., Simplified approach for the optimal sizing of throttled air chambers (2012) J. Hydraul. Eng., 138, pp. 1101-1109 | |
dcterms.bibliographicCitation | Ramalingam, D., Lingireddy, S., Neural network-derived heuristic framework for sizing surge vessels (2014) Journal of Water Resources Planning and Management, 140, pp. 678-692 | |
dcterms.bibliographicCitation | Zhang, J., Miao, D., Chen, S., Li, D., An approximate analytical method to size an air vessel in water supply system (2016) Water Science and Technology: Water Supply, , ws2016201 | |
dcterms.bibliographicCitation | Miao, D., Zhang, J., Chen, S., Yu, X., Water hammer suppression for long distance water supply systems by combining the air vessel and valve (2017) Journal of Water Supply: Research and Technology-Aqua, 66 (5), pp. 319-326 | |
dcterms.bibliographicCitation | Malekpour, A., Karney, B., Nault, J., Physical understanding of sudden pressurization of pipe systems with entrapped air: Energy auditing approach (2015) Journal of Hydraulic Engineering, 142 (2) | |
dcterms.bibliographicCitation | Pozos-Estrada, O., Sánchez-Huerta, A., Breña-Naranjo, J.A., Pedrozo-Acuña, A., Failure analysis of a water supply pumping pipeline system (2016) Water, 8, p. 395 | |
dcterms.bibliographicCitation | Liu, J., Zhang, J., Yu, X., Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe (2018) Journal of Water Supply: Research and Technology-Aqua, , press | |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket (2018) Urban Water Journal, , manuscript for publication | |
dcterms.bibliographicCitation | Besharat, M., Ramos, H.M., Theorical and experimental analysis of pressure surge in a two-phase compressed air vessel (2015) 12 th International Conference on Pressure Surges, pp. 729-744. , BHR Group, Ireland, Dublin | |
dcterms.bibliographicCitation | Kim, S.G., Lee, K.B., Kim, K.Y., Water hammer in the pump-rising pipeline system with an air chamber (2015) Journal of Hydrodynamics, 26 (6), pp. 960-964 | |
dcterms.bibliographicCitation | Wang, C., Yang, J., Nilsson, H., Simulation of water level fluctuations in a hydraulic system using a coupled liquid-gas model (2015) Water, 7, pp. 4446-4476 | |
dcterms.bibliographicCitation | ANSYS FLUENT R19.0 Academic [Computer Software], , ANSYS, Canonsburg, PA | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |