A machine learning model for triage in lean pediatric emergency departments
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.editor | Escalante H.J. | |
dc.contributor.editor | Montes-y-Gomez M. | |
dc.contributor.editor | Segura A. | |
dc.contributor.editor | de Dios Murillo J. | |
dc.creator | Caicedo-Torres W. | |
dc.creator | García G. | |
dc.creator | Pinzón H. | |
dc.date.accessioned | 2020-03-26T16:32:44Z | |
dc.date.available | 2020-03-26T16:32:44Z | |
dc.date.issued | 2016 | |
dc.description.abstract | High demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient handling, with success. Lean approaches in EDs include separate patient streams, with low-complexity patients treated in a so-called Fast Track, in order to reduce total waiting time and to free-up capacity to treat more complicated patients in a timely manner. In this work we propose the use of Machine Learning techniques in a Lean Pediatric ED to correctly predict which patients should be admitted to the Fast Track, given their signs and symptoms. Charts from 1205 patients of the emergency department of Hospital Napoleón Franco Pareja in Cartagena - Colombia, were used to construct a dataset and build several predictive models. Validation and test results are promising and support the validity of this approach and further research on the subject. © Springer International Publishing AG 2016. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 212-221 | |
dc.identifier.doi | 10.1007/978-3-319-47955-2_18 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9783319479545 | |
dc.identifier.issn | 03029743 | |
dc.identifier.orcid | 55782426500 | |
dc.identifier.orcid | 57191839719 | |
dc.identifier.orcid | 55782490400 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8997 | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.relation.conferencedate | 23 November 2016 through 25 November 2016 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994153904&doi=10.1007%2f978-3-319-47955-2_18&partnerID=40&md5=c13dcd2b943033797d17b5c57ff8344a | |
dc.source.event | 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016 | |
dc.subject.keywords | Emergency department | |
dc.subject.keywords | Fast track | |
dc.subject.keywords | Lean | |
dc.subject.keywords | Logistic regression | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Neural networks | |
dc.subject.keywords | PCA | |
dc.subject.keywords | SVM | |
dc.subject.keywords | Triage | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Complex networks | |
dc.subject.keywords | Emergency rooms | |
dc.subject.keywords | Hospitals | |
dc.subject.keywords | Neural networks | |
dc.subject.keywords | Patient monitoring | |
dc.subject.keywords | Patient treatment | |
dc.subject.keywords | Pediatrics | |
dc.subject.keywords | Emergency departments | |
dc.subject.keywords | Fast tracks | |
dc.subject.keywords | Lean | |
dc.subject.keywords | Logistic regressions | |
dc.subject.keywords | Triage | |
dc.subject.keywords | Learning systems | |
dc.title | A machine learning model for triage in lean pediatric emergency departments | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | Aplin, S., Baines, D., De Lima, J., Use of the ASA physical status grading system in pediatric practice (2007) Paediatr. Anaesth., 17 (3), pp. 216-222 | |
dcterms.bibliographicCitation | Beyer, J.E., Turner, S.B., Jones, L., Young, L., Onikul, R., Bohaty, B., The alternate forms reliability of the Oucher pain scale (2005) Pain Manag. Nurs, 6 (1), pp. 10-17 | |
dcterms.bibliographicCitation | Bonadio, W.A., Hennes, H., Smith, D., Ruffing, R., Melzer-Lange, M., Lye, P., Isaacman, D., Reliability of observation variables in distinguishing infectious outcome of febrile young infants (1993) Pediatr. Infect. Dis. J, 12 (2), pp. 111-114 | |
dcterms.bibliographicCitation | Carrol, E., Riordan, F., Thomson, A., Sills, J., Hart, C., The role of the Glasgow meningococcal septicaemia prognostic score in the emergency management of meningococcal disease (1999) Arch. Dis. Child, 81 (3), p. 278. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1718049/ | |
dcterms.bibliographicCitation | Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018 | |
dcterms.bibliographicCitation | Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Zupan, B., Orange: Data mining toolbox in python (2013) J. Mach. Learn. Res, 14, pp. 2349-2353. , http://jmlr.org/papers/v14/demsar13a.html | |
dcterms.bibliographicCitation | Ferres, J., Comparison of two nebulized treatments in wheezing infants (1988) Eur. Respir. J, 1, p. 306 | |
dcterms.bibliographicCitation | Fitzgerald, G., Triage revisited (1998) Emerg. Med, 10 (4), pp. 291-293. , http://dx.doi.org/10.1111/j.1442-2026.1998.tb00694.x | |
dcterms.bibliographicCitation | Herndon, R., (2006) Handbook of Neurologic Rating Scales, , http://books.google.com.co/books?id=w1yPmehSZ2cC, 2nd edn. Demos Medical Publishing, New York | |
dcterms.bibliographicCitation | Holden, R.J., Lean thinking in emergency departments: A critical review (2010) Ann. Emerg. Med, 57 (3), pp. 265-278. , http://dx.doi.org/10.1016/j.annemergmed.2010.08.001 | |
dcterms.bibliographicCitation | Huppler, A.R., Eickhoff, J.C., Wald, E.R., Performance of low-risk criteria in the evaluation of young infants with fever: Review of the literature (2010) Pediatrics, 125 (2), pp. 228-233. , http://pediatrics.aappublications.org/content/125/2/228 | |
dcterms.bibliographicCitation | Ieraci, S., Digiusto, E., Sonntag, P., Dann, L., Fox, D., Streaming by case complexity: Evaluation of a model for emergency department fast track (2008) Emerg. Med. Australas, 20 (3), pp. 241-249. , http://dx.doi.org/10.1111/j.1742-6723.2008.01087.x | |
dcterms.bibliographicCitation | Jolliffe, I., (2002) Principal Component Analysis. Springer Series in Statistics, , http://books.google.com.co/books?id=TtVF-ao4fI8C, Springer, Berlin | |
dcterms.bibliographicCitation | Kelly, A.M., Bryant, M., Cox, L., Jolley, D., Improving emergency department efficiency by patient streaming to outcomes-based teams (2007) Aust. Health Rev, 31 (1), pp. 16-21. , http://www.publish.csiro.au/paper/AH070016 | |
dcterms.bibliographicCitation | McCarthy, P.L., Sharpe, M.R., Spiesel, S.Z., Dolan, T.F., Forsyth, B.W., Dewitt, T.G., Fink, H.D., Cicchetti, D.V., Observation scales to identify serious illness in febrile children (1982) Pediatrics, 70 (5), pp. 802-809. , http://pediatrics.aappublications.org/content/70/5/802 | |
dcterms.bibliographicCitation | McCullagh, P., Nelder, J., (1989) Generalized Linear Models, , http://books.google.co.uk/books?id=h9kFH2FfBkC, 2nd edn. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, Abingdon-on-Thames | |
dcterms.bibliographicCitation | Mintegui, R.S., Sanchez, E.J., Benito, F.J., Angulo, B.P., Gastiasoro, C.L., Ortiz, A.A., Usefulness of oxygen saturation in the assessment of children with moderated laryngitis (1996) An. Esp. Pediatr, 45 (3), pp. 261-263 | |
dcterms.bibliographicCitation | Ng, D., Vail, G., Thomas, S., Schmidt, N., Applying the lean principles of the Toyota production system to reduce wait times in the emergency department (2010) CJEM, 12 (1), pp. 50-57 | |
dcterms.bibliographicCitation | Paganini, H., de Santolaya, P., Álvarez, M., Araña Rosaínz, M.D.J., Arteaga Bonilla, R., Bonilla, A., Caniza, M., Scopinaro, M., Diagn (2011) Revista Chilena De Infectolog, 28, pp. 10-38. , http://www.scielo.cl/scielo.php?script=sciarttext&pid=S0716-10182011000400003&nrm=iso | |
dcterms.bibliographicCitation | Rumelhart, D.E., Hinton, G.E., Williams, R.J., Parallel distributed processing: Explorations in the microstructure of cognition (1986) Learning Internal Representations by Error Propagation, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, Cambridge | |
dcterms.bibliographicCitation | Scarfone, R.J., Fuchs, S.M., Nager, A.L., Shane, S.A., Controlled trial of oral prednisone in the emergency department treatment of children with acute asthma (1993) Pediatrics, 92 (4), pp. 513-518 | |
dcterms.bibliographicCitation | Velasco-Pérez, G., Escalera analg (2014) Acta pedi´atrica De M, 35, pp. 249-255. , http://www.scielo.org.mx/scielo.php?script=sciarttext&pid=S0186-23912014000300011&nrm=iso | |
dcterms.bibliographicCitation | Womack, J.P., Jones, D.T., Roos, D., (1991) The Machine that Changed The World: The Story of Lean Production, , https://books.google.de/books?id=Jz4zog27W7gC, The MIT International Motor Vehicle Program. Harper- Collins, New York | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |