Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Fajardo Cuadro, Juan Gabriel | |
dc.creator | Valle H. | |
dc.creator | Buelvas A. | |
dc.date.accessioned | 2020-03-26T16:32:35Z | |
dc.date.available | 2020-03-26T16:32:35Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME. | eng |
dc.description.sponsorship | American Society of Mechanical Engineers (ASME) | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018 | |
dc.identifier.doi | 10.1115/IMECE2018-87495 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9780791852088 | |
dc.identifier.orcid | 56581610900 | |
dc.identifier.orcid | 57207878802 | |
dc.identifier.orcid | 57207884321 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8904 | |
dc.language.iso | eng | |
dc.publisher | American Society of Mechanical Engineers (ASME) | |
dc.relation.conferencedate | 9 November 2018 through 15 November 2018 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448e | |
dc.source | Scopus2-s2.0-85063156043 | |
dc.source.event | ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 | |
dc.subject.keywords | Ammonia | |
dc.subject.keywords | Catalytic converters | |
dc.subject.keywords | Exergy | |
dc.subject.keywords | Nitric acid | |
dc.subject.keywords | Avoidable exergy destructions | |
dc.subject.keywords | Destroyed exergy | |
dc.subject.keywords | Destruction analysis | |
dc.subject.keywords | Exergy Analysis | |
dc.subject.keywords | Nitric acid production | |
dc.subject.keywords | Production plant | |
dc.subject.keywords | Reduce costs | |
dc.subject.keywords | Scientific studies | |
dc.subject.keywords | Catalytic oxidation | |
dc.title | Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | (2017) Energy Information Administraion, , https://www.eia.gov/, 5 January En línea | |
dcterms.bibliographicCitation | BP Global, , www.bp.com/energyoutlook, En línea. Último acceso: 2017 January 15 | |
dcterms.bibliographicCitation | Riekert, L., The efficiency of energy utilization in chemical process (1974) Pergamon Press, 29, pp. 1613-1620 | |
dcterms.bibliographicCitation | Denbigh, K.G., The second-law efficiency of chemical process (1956) De Chemical Engineering Science, 1, p. 9 | |
dcterms.bibliographicCitation | Vilarinho, A., Campos, J., Pinho, C., Energy and exergy analysis of an aromatics plant (2016) Case Studies in Thermal Engineering, 8, pp. 115-127 | |
dcterms.bibliographicCitation | Mewada, R., Nimkar, S., Minimization of exergy losses in mono high pressure nitric acid process (2015) International Journal of Exergy, 17 (2) | |
dcterms.bibliographicCitation | Kelly, S., (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction | |
dcterms.bibliographicCitation | Tsatsaronis, G., Park, M., On avoidable and unavoidable exergy destructions and invstment costs in thermal systems (2002) Energy Conversion and Management, 43, pp. 1259-1270 | |
dcterms.bibliographicCitation | Morosuk, T., Tsatsaronis, G., Advanced exergy analysis for chemically reacting systems – Application to a simple open gas-turbine system (2009) International Journal of Thermodynamics, 12 (3), pp. 105-111 | |
dcterms.bibliographicCitation | Tsatsaronis, G., Morosuk, T., Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas (2010) Energy, 35, pp. 820-829 | |
dcterms.bibliographicCitation | Connor, H., The manufacture of nitric acid (1976) Platinum Metals Rev, 1, pp. 2-9 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |