Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorMontoya O.D.
dc.date.accessioned2020-03-26T16:33:04Z
dc.date.available2020-03-26T16:33:04Z
dc.date.issued2019
dc.description.abstractThis brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model. The convex formulation is developed via a semidefinite programming model and is solved by using a MATLAB/CVX package. For comparison purposes the exact nonlinear model is solved in a GAMS package to compare the accuracy and quality of the results obtained with the proposed convex reformulation. Numerical testing is made with a small three-node DC-MG test system as well as DC-MGs from 10 to 150 nodes. © 2004-2012 IEEE.eng
dc.description.notesManuscript received May 30, 2018; revised August 14, 2018; accepted August 17, 2018. Date of publication August 21, 2018; date of current version March 26, 2019. This work was supported in part by the National Scholarship Program of Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) under Grant 727-2015, and in part by the Ph.D. Program in Engineering of the Technological University of Pereira. This brief was recommended by Associate Editor S. C. Wong.
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citationIEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 4; pp. 642-646
dc.identifier.doi10.1109/TCSII.2018.2866447
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.issn15497747
dc.identifier.orcid56919564100
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9150
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85052681855&doi=10.1109%2fTCSII.2018.2866447&partnerID=40&md5=45cf7d8232f2d95356858a63e2551548
dc.subject.keywordsAdmissible region
dc.subject.keywordsConstant power loads
dc.subject.keywordsLinear time-invariant DC grids
dc.subject.keywordsPower flow
dc.subject.keywordsSemidefinite programming
dc.subject.keywordsConvex optimization
dc.subject.keywordsElectric load flow
dc.subject.keywordsMATLAB
dc.subject.keywordsAdmissible regions
dc.subject.keywordsConstant power load
dc.subject.keywordsDC grid
dc.subject.keywordsPower flows
dc.subject.keywordsSemidefinite programming
dc.subject.keywordsElectric power utilization
dc.titleNumerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaArtículo
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationHubble, A.H., Ustun, T.S., Composition, placement, and economics of rural microgrids for ensuring sustainable development (2018) Sustain. Energy Grids Netw., 13, pp. 1-18. , Mar
dcterms.bibliographicCitationKarimipour, D., Salmasi, F.R., Stability analysis of AC microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , Jul
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technol-ogy (2014) Renew. Sustain. Energy Rev., 39, pp. 748-764. , Nov
dcterms.bibliographicCitationQian, T., A converter combination scheme for efficiency improvement of PV systems IEEE Trans. Circuits Syst. II, Exp. Briefs, , https://ieeexplore.ieee.org/document/8070390/, to be published [Online]
dcterms.bibliographicCitationSimpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , Aug
dcterms.bibliographicCitationSanchez, S., Ortega, R., Griñó, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , Jul
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Elect. Power Syst. Res., 163, pp. 375-381. , Oct
dcterms.bibliographicCitationMacHado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear AC networks with constant-power loads (2017) IEEE Trans. Circuits Syst. I, Reg. Papers, 64 (10), pp. 2772-2782. , Oct
dcterms.bibliographicCitationXu, Y., Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system (2016) IEEE Trans. Neural Netw. Learn. Syst., 27 (8), pp. 1686-1696. , Aug
dcterms.bibliographicCitationSingh, S., Fulwani, D., On design of a robust controller to mitigate CPL effect: A DC micro-grid application (2014) Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb., pp. 448-454
dcterms.bibliographicCitationChusovitin, P., Pazderin, A., Shabalin, G., Tashchilin, V., Bannykh, P., Voltage stability analysis using Newton method (2015) Proc. IEEE Eindhoven PowerTech, Jun., pp. 1-7
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Elect. Power Syst. Res., 151, pp. 149-153. , Oct
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multi-terminal HVDC systems considering DC/DC converters (2016) Proc. IEEE 25th Int. Symp. Ind. Electron. (ISIE), Jun., pp. 1212-1217
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , Sep
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , Jan
dcterms.bibliographicCitationGarces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , Sep
dcterms.bibliographicCitationLeonardi, B., Ajjarapu, V., Development of multilinear regression models for online voltage stability margin estimation (2011) IEEE Trans. Power Syst., 26 (1), pp. 374-383. , Feb
dcterms.bibliographicCitationFletcher, J.R.E., Fernando, T.L., Iu, H., Reynolds, M., Fani, S., Spatial optimization for the planning of sparse power distribution networks IEEE Trans. Power Syst, , https://ieeexplore.ieee.org/document/8379446/, to be published [Online]
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files