To eggspace and beyond: design and implementation of an autogyro-CanSat with IoT purposes using AWS

dc.contributor.authorRivadeneira, Francoeng
dc.contributor.authorKiyan, Kioshieng
dc.contributor.authorHuayapa, Victoreng
dc.contributor.authorGodinez, Diegoeng
dc.contributor.authorPerez, Nicoleeng
dc.contributor.authorHinostroza, Abeleng
dc.contributor.authorAcosta, Sebastianeng
dc.contributor.authorArce, Diegoeng
dc.date.accessioned2025-09-15 00:00:00
dc.date.accessioned2025-11-06T14:15:12Z
dc.date.available2025-09-15 00:00:00
dc.date.issued2025-09-15
dc.description.abstractIn the context of a lack of educational tools for learning space technologies and satellite development, CanSats were created as an educational tool. This article proposes the mechanical, electrical and software design of a CanSat with an autogyro descent system where the novelty is the implementation of AWS IoT services and Node-RED to store, manipulate and display in real-time the collected weather data. This picosatellite design is capable of safeguarding the integrity of the CanSat's payload where a chicken egg will be placed during the flight and landing phases. Often, other designs of CanSats use local servers implemented on the computer or laptop of the team for storage and display of the data. This makes it more difficult to share the information to people without access to the computer where the server was specifically deployed. The use of AWS services for the Internet of Things is very useful in sharing and displaying the collected information to the public interested in the collected weather data. One of the AWS services implemented allows data subscription through Gmail. The findings made in this paper hold implications for applications involving the transportation and safe landing of delicate payloads in space exploration missions. As a result of the implementation of this design, the separation between the secondary and primary load was successfully achieved and the weather data was transmitted.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol6.n2.628
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14270
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol6.n2.628
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/628/461
dc.relation.citationeditionNúm. 2 , Año 2025 : (In progress) Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage23
dc.relation.citationissue2eng
dc.relation.citationstartpage1
dc.relation.citationvolume6eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesYasuyuki Miyazaki and Mohammed Khalil. Cansat pico size artificial satellite, 2017. [2] Michał Ostaszewski, Kazimierz Dzierzek, and Łukasz Magnuszewski. Analysis of data collected while cansat mission. In 2018 19th International Carpathian Control Conference (ICCC), pages 1–4, 2018. [3] Tanvir Hasan Raian, Jahirul Islam, Saiful Islam, Rafiul Azam, and Sutapa Debnath Jahidul Islam. An affordable cansat design and implimentation to study space science for bangladeshi students. 2020 IEEE Region 10 Symposium (TENSYMP), pages 1205–1208, 6 2020. [4] MCFerraz, M C Pereira, M Greco, and E Peiró. Design of a generic platform for an educational cansat. In Proc. of the 1st IAA Latin American Symp. on Small Satellites, 2017. [5] Carrington Chun, M. Hassan Tanveer, and Sumit Chakravarty. The cansat compendium: A review of scientific cansats. Machines, 11(7), 2023. [6] N Sreenivasaraja, Mr J Jeffrey Jackson Raj, B Nandhagobalan, and S Kavin. Design and fabrication of advance level cansat used for measuring the atmospheric parameters and gps tracking system. 4:1264–1269, 2 2018. [7] Shankar Bhattarai, Ji-Seong Go, and Hyun-Ung Oh. Experimental cansat platform for functional verification of burn wire triggering-based holding and release mechanisms. Aerospace, 8, 7 2021. [8] Angel Colin. A pico-satellite assembled and tested during the 6th cansat leader training program. Journal of Applied Research and Technology, 15:83–91, 2 2017. [9] Efren Bautista-Linares, Enrique A. Morales-Gonzales, Mario Herrera-Cortez, Esther A. Narvaez-Martinez, and Jaime Martinez-Castillo. Design of an advanced telemetry mission using cansat. In 2015 International Conference on Computing Systems and Telematics (ICCSAT), pages 1–4, 2015. [10] Oscar Alberto Jaramillo, Raúl Camacho Briñez, and Juan Camilo Tejada. Design of a cansat for measuring environmental variables. Publicaciones e Investigación, 13:31–38, 7 2019. [11] Shindy Atila Putri Merlyn Inova Christie Latukolan Edwar Kusmadi Rizki Pratama Ramadhan, Aditya Rifky Ramadhan. Prototype of cansat with auto-gyro payload for small satellite. 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), pages 243–248, 10 2019. [12] Prakhar Shukla, Raj Mishra, Uzair Ahmad Sardar, and B. Mohapatra. Satellite design for cansat with autorotatig payloads. 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pages 2385–2392, 10 2022. [13] Carrington Chun, Uday Patel, M. Hassan Tanveer, Kevin Dallesasse Tom Swift, and Sumit Chakravarty. Crafting cansats: A novel modular design paradigm for scientific cansats. 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET), pages 68–72, 12 2023. [14] Rob Wojcik, Felix Bachmann, Len Bass, Paul Clements, Paulo Merson, Robert Nord, and Bill Wood. Attribute-driven design (add), version 2.0 software architecture technology initiative. 2006. [15] PEU. Guía de la misión espacial concurso iberoamericano satélites enlatados 2023, 2023. [16] Airfoil Tools. Naca 4 digit airfoil database search. [17] Alejandro Ventura, Johan Nuñez-Quispe, Godo Sanchez, and Jafet Santivañez. Cansat payload with autogyro for descent in experimental rocket flights: Development, cfd analysis, and preliminary test on free-fall. Journal of Physics: Conference Series, 2235, 5 2022. [18] Sultan Nur Bulut, Mahircan Gül, Can Beker, ˙ Ibrahim ˙ Ilge ˙ Ipek, Ömer Eren Can Koçulu, Çınar Topalo˘glu, Nurullah Dinçer, Ahmet Kırlı, Hasan Fatih Ertu˘grul, and Celal Sami Tüfekci. Model satellite design for cansat competition. In 2013 6th International Conference on Recent Advances in Space Technologies (RAST), pages 913–917, June 2013. [19] P.N. Shankaranarayanan, Ashiwan Sivakumar, Sanjay Rao, and Mohit Tawarmalani. Performance sensitive replication in geo-distributed cloud datastores. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pages 240–251, 2014. [20] Juan García Puertas. Edge Computing in IoT: A Study on AWS IoT Greengrass and DynamoDB. PhD thesis, Universitat Politècnica de València, 2023. [21] Justin Waterman, Hyeongjun Yang, and Fadi Muheidat. Aws iot and the interconnected world– aging in place. In 2020 International Conference on Computational Science and Computational Intelligence (CSCI), pages 1126–1129, 2020. [22] Nadia Imtiaz Jaya and Md. Farhad Hossain. A prototype air flow control system for home automation using mqtt over websocket in aws iot core. In 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pages 111–1116, 2018. [23] Aman Kumar Singh, Abdullah Ahmed Arifi, R Harikrishnan, Bhuvi Datta, and Shivali Amit Wagle. Iot based home automation using app aws. In 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), pages 1–9, 2022.eng
dc.rightsFranco Rivadeneira, Kioshi Kiyan, Victor Huayapa, Diego Godinez, Nicole Perez, Abel Hinostroza, Sebastian Acosta, Diego Arce - 2025eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/628eng
dc.subjectCanSateng
dc.subjectAWSeng
dc.subjectAutogyroeng
dc.subjectIoT systemseng
dc.titleTo eggspace and beyond: design and implementation of an autogyro-CanSat with IoT purposes using AWSspa
dc.title.translatedTo eggspace and beyond: design and implementation of an autogyro-CanSat with IoT purposes using AWSspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos