Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorGil-González, Walter
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.creatorSerra F.M.
dc.creatorMagaldi G.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.available2020-03-26T16:33:05Z
dc.date.issued2019
dc.description.abstractThis paper presents a global tracking passivity-based proportional-integral (PI) control for output voltage regulation of a DC-DC Buck converter. The proposed controller is based on passivity formulation since DC-DC Buck converter has a passive structure in open-loop. Additionally, the controller takes advantage of the PI actions to design a control law that guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. The proposed controller does not depend on the parameters, which makes it a robust controller. The robustness of the proposed controller is checked by comparing its dynamical performance in front of a conventional PID controller. All simulation results were fulfilled via MATLAB software. © 2019 IEEE.eng
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and the PhD program in Engineering of the Technological University of Pereira.
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.description.sponsorshipIEEE;IEEE Circuits and Systems Society (CAS);IEEE Council on Electronic Design Automation (CEDA)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings; pp. 189-192
dc.identifier.doi10.1109/LASCAS.2019.8667557
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781728104522
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500
dc.identifier.orcid37104976300
dc.identifier.orcid57190661793
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9160
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate24 February 2019 through 27 February 2019
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064155449&doi=10.1109%2fLASCAS.2019.8667557&partnerID=40&md5=a67b6653f764b470001a6c5b0a203e84
dc.sourceScopus2-s2.0-85064155449
dc.source.event10th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019
dc.subject.keywordsAsymptotically stability.
dc.subject.keywordsDC-DC buck converter
dc.subject.keywordsGlobal tracking
dc.subject.keywordsPassivity-based proportional-integral control
dc.subject.keywordsControllers
dc.subject.keywordsElectric inverters
dc.subject.keywordsMATLAB
dc.subject.keywordsProportional control systems
dc.subject.keywordsThree term control systems
dc.subject.keywordsTwo term control systems
dc.subject.keywordsVoltage regulators
dc.subject.keywordsAsymptotically stability
dc.subject.keywordsClosed-loop operation
dc.subject.keywordsDC-DC buck converter
dc.subject.keywordsDynamical performance
dc.subject.keywordsGlobal tracking
dc.subject.keywordsOutput voltage regulation
dc.subject.keywordsPassive structures
dc.subject.keywordsProportional-integral control
dc.subject.keywordsDC-DC converters
dc.titleOutput Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitationPlanas, E., Andreu, J., Ǵarate, J.I., De Martinez, A.I., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renewable Sustainable Energy Rev, 43, pp. 726-749
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationVeĺazquez, I.O., Espinosa-Ṕerez, G.R., Montoya, O.D., Ruiz, A.G., Na, L.F.G.N., Current control mode in pv systems integrated with DC-DC converters for MPPT: An IDA-PBC Approach (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 1-6. , April
dcterms.bibliographicCitationGiraldo, O.D.M., Ruiz, A.G., Veĺazquez, I.O., Espinosa-Ṕerez, G.R., Passivity-based control for battery charging/discharging applications by Using a Buck-Boost DC-DC Converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. , April
dcterms.bibliographicCitationHe, P., Khaligh, A., Comprehensive analyses and comparison of 1 kw isolated DC-DC Converters for Bidirectional EV Charging Systems (2017) IEEE Trans. Transport. Electrific, 3 (1), pp. 147-156. , March
dcterms.bibliographicCitationShang, F., Niu, G., Krishnamurthy, M., Design and analysis of a high-voltage-gain step-up resonant DC-DC Converter for Transportation Applications (2017) IEEE Trans. Transport. Electrific, 3 (1), pp. 157-167. , March
dcterms.bibliographicCitationMazumder, S.K., Tahir, M., Acharya, K., Master-slave current-sharing control of a parallel DC-DC converter system over an RF Communication Interface (2008) IEEE Transactions on Industrial Electronics, 55 (1), pp. 59-66. , Jan
dcterms.bibliographicCitationKim, S., Park, Y., Ali, I., Nga, T.T.K., Ryu, H., Khan, Z.H.N., Park, S., Lee, K., Design of a high efficiency DC-DC buck converter with two-step digital PWM and low power self-Tracking zero current detector for iot applications (2018) IEEE Transactions on Power Electronics, 33 (2), pp. 1428-1439. , Feb
dcterms.bibliographicCitationMukherjee, N., Strickland, D., Control of cascaded DC-DC converter-based hybrid battery energy storage Systems-Part I: Stability Issue (2016) IEEE Trans. Ind. Electron, 63 (4), pp. 2340-2349. , April
dcterms.bibliographicCitationCavanini, L., Cimini, G., Ippoliti, G., Bemporad, A., Model predictive control for pre-compensated voltage mode controlled DC-DC converters (2017) IET Control Theory Applications, 11 (15), pp. 2514-2520
dcterms.bibliographicCitationWang, J., Zhang, C., Li, S., Yang, J., Li, Q., Finite-Time output feedback control for PWM-based DC-DC buck power Converters of Current Sensorless Mode (2017) IEEE Trans. Control Syst. Technol, 25 (4), pp. 1359-1371. , July
dcterms.bibliographicCitationWu, B., Yang, J., Wang, J., Li, S., Extended state observer based control for DC-DC buck converters subject to mismatched disturbances (2014) Proceedings of the 33rd Chinese Control Conference, pp. 8080-8085. , July
dcterms.bibliographicCitationMa, L., Zhang, Y., Yang, X., Ding, S., Dong, L., Quasi-continuous second-order sliding mode control of buck converter (2018) IEEE Access, 6, pp. 17859-17867
dcterms.bibliographicCitationLing, R., Maksimovic, D., Leyva, R., Second-order sliding-mode controlled synchronous buck DC-DC converter (2016) IEEE Trans. Power Electron, 31 (3), pp. 2539-2549. , March
dcterms.bibliographicCitationTsai, C., Chen, B., Li, H., Switching frequency stabilization techniques for adaptive on-Time Controlled buck converter with adaptive voltage positioning mechanism (2016) IEEE Trans. Power Electron, 31 (1), pp. 443-451. , Jan
dcterms.bibliographicCitationYang, J., Wu, B., Li, S., Yu, X., Design and qualitative robustness analysis of an dobc approach for DC-DC Buck Converters with Unmatched Circuit Parameter Perturbations (2016) IEEE Trans. Circuits Syst. i Regul. Pap, 63 (4), pp. 551-560. , April
dcterms.bibliographicCitationCisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with Limited Control Authority (2013) IEEE Journal of Emerging and Selected Topics in Power Electronics, 1 (4), pp. 247-259. , Dec
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19
dcterms.bibliographicCitationTalj, R., Ortega, R., Astolfi, A., Passivity and robust pi control of the air supply system of a pem fuel cell model (2011) Automatica, 47 (12), pp. 2554-2561
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract, 43, pp. 109-119
dcterms.bibliographicCitationPerez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol, 12 (6), pp. 881-890. , Nov
dcterms.bibliographicCitationZeng, J., Zhang, Z., Qiao, W., An interconnection and damping assignment passivity-based controller for a DC-DC Boost Converter with a Constant Power Load (2014) IEEE Trans. Ind. Appl, 50 (4), pp. 2314-2322. , July
dcterms.bibliographicCitationKhalil, H., (2013) Nonlinear Systems Ser. Always Learning, , Pearson Education Limited
dcterms.bibliographicCitationPerko, L., (2013) Differential Equations Dynamical Systems Ser. Texts in Applied Mathematics, , Springer New York
dcterms.bibliographicCitationGil-Gonźalez, W., Montoya, O.D., Passivity-based pi control of a smes system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files