Control de un cargador de baterías para vehículos eléctricos con factor de potencia unitario

dc.contributor.authorSerra F.M. eng
dc.contributor.authorDe Ángelo, Cristian Hernáneng
dc.date.accessioned2021-07-30 00:00:00
dc.date.accessioned2025-05-21T19:15:43Z
dc.date.available2021-07-30 00:00:00
dc.date.issued2021-07-30
dc.description.abstractEn este trabajo se presenta una estrategia de control no lineal para un cargador de baterías de vehículos eléctricos. El controlador propuesto permite realizar la recarga del banco de baterías mediante un perfil de carga a corriente y tensión constante mientras que asegura factor de potencia unitario y baja distorsión en la corriente de red. Se realiza un modelo único para todo el sistema a partir del cual se diseña el controlador utilizando asignación de interconexión y amortiguamiento. Esta estrategia asegura un controlador estable a lazo cerrado y permite desacoplar el sistema evitando que las perturbaciones del lado de la red afecten la carga de la batería y viceversa. La propuesta es validada mediante resultados de simulación.spa
dc.description.abstractA nonlinear controller for an electric vehicle battery charger is proposed in this work. The controller allows charging the battery bank with constant current and constant voltage charging profile, while ensuring unity power factor and low distortion in the grid current. A single model is made for the complete system and the controller is designed using interconnection and damping assignment. The proposed controller ensures the closed-loop stability and allows decoupling the system avoiding disturbances in the electric grid and battery bank. The proposal is validated with simulation results.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol2.n1.3
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13490
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol2.n1.3
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/427/352
dc.relation.citationeditionNúm. 1 , Año 2021 : Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage44
dc.relation.citationissue1eng
dc.relation.citationstartpage32
dc.relation.citationvolume2eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesChoi, S.-C., Jung, D.-Y., Ryu, D.-G., Kim, J.-H., and Won, C.-Y. (2012). 10kw rapid charger for electric vehicle with active power filter function. In IEEE Vehicle Power and Propulsion Conf. (VPPC). IEEE.eng
dc.relation.referencesDoria-Cerezo, A., Batlle, C., and Espinosa-Perez, G. (2010). Passivity-based control of a wound-rotor synchronous motor. IET Control Theory & Applications, 4(10):2049–2057.eng
dc.relation.referencesHaghbin, S., Lundmark, S., Alakula, M., and Carlson, O. (2013). Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution. IEEE Trans. on Indust. Elect., 60(2):459–473.eng
dc.relation.referencesKisacikoglu, M. C., Kesler, M., and Tolbert, L. M. (2015). Single-Phase On-Board Bidirectional PEV Charger for V2G Reactive Power Operation. IEEE Trans. on Smart Grid, 6(2):767–775.eng
dc.relation.referencesMartin Fernandez,L.L., Serra,F.M.,DeAngelo, C.H.,and Montoya,O.D.(2020). Control of acharging station for electric vehicles. J. Phys. Conf. Ser, 1448:012013.eng
dc.relation.referencesMontoya, O. D., Gil-González, W. J., Serra, F. M., Dominguez, J., Campillo, J., and Hernandez, J. C. (2020). Direct power control design for charging electric vehicles: A passivity-based control approach. In 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE.eng
dc.relation.referencesMusavi,F.,Craciun,M.,Gautam,D.S.,andEberle,W.(2014). Control Strategies for Wide Output Voltage Range LLC Resonant DC-DC Converters in Battery Chargers. IEEE Trans. on Vehic. Tech., 63(3):1117–1125. Nguyen,C.-L.andLee,H.-H.(2012). An effective control scheme for a universal input battery charger in electric vehicle applications. In 7th Int. Forum on Strategic Technology (IFOST).eng
dc.relation.referencesOrtega, R., van der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and Damping Assignment Passivity-Based Control of Port-Controlled Hamiltonian Systems. Automatica, 38(3):585–596.eng
dc.relation.referencesPahlevaninezhad, M., Das, P., Drobnik, J., Moschopoulos, G., Jain, P. K., and Bakhshai, A. (2012). A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles. IEEE Trans. on Ind. Inf., 8(3):596–614.eng
dc.relation.referencesPinto, J. G., Monteiro, V., Goncalves, H., and Afonso, J. L. (2014). Onboard Reconfigurable Battery Charger for Electric Vehicles With Traction-to-Auxiliary Mode. IEEE Trans. on Vehic. Tech., 63(3):1104–1116.eng
dc.relation.referencesSerra, F. M. and De Angelo, C. H. (2016). IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor. In 2016 IEEE Conference on Control Applications (CCA). IEEE.eng
dc.relation.referencesSerra, F. M. and De Angelo, C. H. (2017). IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research, 142:12–19.eng
dc.relation.referencesSerra,F.M.,DeAngelo,C.H.,andForchetti,D.G.(2014). Interconnectionanddampingassignmentcontrolofa three-phase front end converter. International Journal of Electrical Power & Energy Systems, 60:317–324.eng
dc.relation.referencesSerra, F. M., Forchetti, D. G., and De Angelo, C. H. (2010). Comparison of positive sequence detectors for shunt active filter control. In IEEE Int. Conf. on Ind. App. (INDUSCON). IEEE.eng
dc.relation.referencesWilliamson, S. S., Rathore, A. K., and Musavi, F. (2015). Industrial Electronics for Electric Transportation: Current State-of-the-Art and Future Challenges. IEEE Trans. on Indust. Elect., 62(5):3021–3032.eng
dc.relation.referencesWirasingha, S. G., Gremban, R., and Emadi, A. (2012). Source-to-Wheel (STW) Analysis of Plug-in Hybrid Electric Vehicles. IEEE Trans. on Smart Grid, 3(1):316–331.eng
dc.relation.referencesYilmaz,M.andKrein,P.T.(2013). ReviewoftheImpactofVehicle-to-GridTechnologiesonDistributionSystems and Utility Interfaces. IEEE Trans. on Power Electronics, 28(12):5673–5689.eng
dc.rightsFederico M. Serra, Cristian H. De Angelo - 2021eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/427eng
dc.subjectBattery chargereng
dc.subjectNonlinear controleng
dc.subjectElectric vehicleseng
dc.subjectCargador de bateríasspa
dc.subjectControl no linealspa
dc.subjectVehículos eléctricosspa
dc.titleControl de un cargador de baterías para vehículos eléctricos con factor de potencia unitariospa
dc.title.translatedControl de un cargador de baterías para vehículos eléctricos con factor de potencia unitariospa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos