Thermal conductivity determination in Fe78Si9B13/GNP/Epoxy composites by observation of samples and use of ad-hoc software: a new approximation methodology
| dc.contributor.author | Pagnola, Marcelo Ruben | eng |
| dc.contributor.author | Useche, Jairo | eng |
| dc.contributor.author | Faig, Javier | eng |
| dc.contributor.author | Martinez García, Ricardo | eng |
| dc.date.accessioned | 2025-09-15 00:00:00 | |
| dc.date.available | 2025-09-15 00:00:00 | |
| dc.date.issued | 2025-09-15 | |
| dc.description.abstract | This study investigated the thermal conductivity (k) of composites composed of Fe78Si9B13 microparticles (weight fractions: 10%, 15%, and 25%) and graphene nanoplatelets (GNP) (weight fractions: 0%, 1.0%, and 1.5%) embedded in a transparent epoxy matrix. Nine cylindrical samples (7 mm diameter and 2 mm length) were prepared. Thermal conductivity was determined by measuring the thermal diffusivity using the flash technique and applying the relevant relationship between the two parameters. Because some samples contained pores, the measured diffusivity was corrected for porosity by using a novel method developed by the authors. This method allowed the estimation of the composite percentage porosity based on the Young's modulus (E) of the sample. This correction eliminates the influence of porosity on the calculated diffusivity value, allowing determination of the intrinsic diffusivity of the composite material. Finally, each sample's thermal conductivity was calculated using the diffusivity values. The values of the estimated parameters were compared with those determined by other well-known and established methods, and practically the same results were obtained. These comparative calculations demonstrated the efficiency of the proposed method. The results demonstrate the effectiveness of this method in correcting the effects of porosity on the thermal conductivity measurements in the studied samples. | eng |
| dc.format.mimetype | application/pdf | eng |
| dc.identifier.doi | 10.32397/tesea.vol6.n2.902 | |
| dc.identifier.eissn | 2745-0120 | |
| dc.identifier.url | https://doi.org/10.32397/tesea.vol6.n2.902 | |
| dc.language.iso | eng | eng |
| dc.publisher | Universidad Tecnológica de Bolívar | eng |
| dc.relation.bitstream | https://revistas.utb.edu.co/tesea/article/download/902/457 | |
| dc.relation.citationedition | Núm. 2 , Año 2025 : (In progress) Transactions on Energy Systems and Engineering Applications | eng |
| dc.relation.citationendpage | 18 | |
| dc.relation.citationissue | 2 | eng |
| dc.relation.citationstartpage | 1 | |
| dc.relation.citationvolume | 6 | eng |
| dc.relation.ispartofjournal | Transactions on Energy Systems and Engineering Applications | eng |
| dc.relation.references | Egami, T. (1984). Magnetic amorphous alloys: physics and technological applications, Reports on Progress in Physics, 47 (12),1601–1725, DOI:10.1088/0034-4885/47/12/002 [2] Pavuna D. (1981). Production of metallic glass ribbons by the chill-block melt spinning technique in stabilized laboratory conditions”, J. Mater. Sci., 16, 2419–2433 [3] Pagnola M.R., Useche J. and Marrugo G. (2018). Magnetic Materials by Melt Spinning Method, Structural Characterization, and Numerical Modeling, New Uses of Micro and Nanomaterials. InTech, Oct. 10. [4] Pagnola M., Malmoria M., Barone M. (2016). Biot number behavior in the Chill Block Melt Spinning (CBMS) process, Applied Thermal Engineering, 103, 807–811. [5] Derewnicka, D., Ferrari, S., Bilovol, V., Pagnola, M., Morawiec, K. and Saccone, F. (2018). Influence of Nb, Mo, and Ti as doping metals on structure and magnetic response in NdFeB based melt spun ribbons, Journal of Magnetism and Magnetic Materials, 462, DOI: 10.1016/j.jmmm.2018.05.004 [6] Shingu P. H. (1982). Mechanical alloying, Trans Tech Publications, Singapore. [7] Davies H., Gibbs M., Soft magnetic materials. Part 1. Amorphous alloys. Handbook of Magnetism and Advanced Magnetic Material, Ed Wiley, Novel Materials, 4, 1-21 [8] Morales, F., Pagnola, M., Muriel, J., Socolovsky, L. (2020). Molienda mecánica sobre cintas magnéticas blandas de Fe78Si9B13 con molino de bolas ortorrómbico de fabricación propia, Asociación Argentina de Materiales, Revista SAM, 1: 61-67 [9] Ozdemir F., Evans I., Rankin K.S., Bretcanu O. (2021). Preliminary evaluation of the in vitro biocompatibility of magnetic bone cement composites, Open Ceramics, Volume 7, 100146: ISSN 2666-5395 [10] Zhuang Tian, Yancheng Li, Jiajia Zheng, Shuguang Wang. (2019). A state-of-the-art on self-sensing concrete: Materials, fabrication and properties, Composites Part B: Engineering, Volume 177, 107437: ISSN 1359-8368 [11] Wenyao Li, Han Gu, Zhihao Liu, Haiwei Zhang, Li Jiang, Xing Zhou. (2024). Research progress in the synthesis and application of magnetic self-healing polymer composites”, European Polymer Journal, Volume 202,112633: ISSN 0014-3057 [12] Pei-Xiu Tian, Yi-Dong Li, Zhi Hu, Jian-Bing Zeng. (2024). Fire-resistant and high-performance epoxy vitrimers for fully recyclable carbon fiber-reinforced composites, Materials Today Chemistry, Volume 36, 101965: ISSN 2468-5194 [13] Ramzan M., Obodo R.M., Nsude H.E., Shahzad M.I., Ahmad I., Ezema F. (2023). Functionalized ceramic matrix composites: Fabrication, application, and recycling, Editor(s): Rajan Jose, Fabian Ezema, In Elsevier Series in Advanced Ceramic Materials, Surface Modification and Functionalization of Ceramic Composites, Elsevier, 189-204: ISBN 9780323858830 [14] Palmero, E. M., Rial, J., de Vicente, J., Camarero, J., Skårman, B., Vidarsson, H., Bollero, A. (2018). Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies, Science and Technology of Advanced Materials, 19 (1), 465–473, DOI:10.1080/14686996.2018.1471321 [15] Kenfaui, D., Valdez-Nava, Z., Laudebat, L., Locatelli, M. L., Combettes, C., Bley, V., Guillemet-Fritsch, S. (2022). Innovative ceramic-matrix composite substrates with tunable electrical conductivity for high-power applications, Science and Technology of Advanced Materials, 23 (1), 735–751, DOI:10.1080/14686996.2022.2137695 [16] Rahaman, M. H., Yaqoob, U., & Kim, H. C. (2019). The effects of conductive nano fillers alignment on the dielectric properties of copolymer matrix, Advanced Manufacturing: Polymer & Composites Science, 5 (1), 29–36, DOI:10.1080/20550340.2019.1567067 [17] Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L. and Chen, G. (2010). Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling,” Journal of Materials Chemistry, 20, 5817-5819, DOI:10.1039/c0jm01354d [18] Dong M., Zhang H., Tzounis L., Santagiuliana G., Bilotti E., Papageorgiou D.G. (2021). Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review, Carbon, Volume 185: 57-81, ISSN 0008-6223,https://doi.org/10.1016/j.carbon.2021.09.009. [19] Mu M., Wan C., McNally T. (2017). Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins, 2D Mater. 4, 042001, https://doi.org/10.1088/2053-1583/aa7cd1 [20] Jiadong Qin, Yubai Zhang, Sean E. Lowe, Lixue Jiang, Han Yeu Ling, Ge Shi, Porun Liu, Shanqing Zhang, Yu Lin Zhong and Huijun Zhao. (2019). Room temperature production of graphene oxide with thermally labile oxygen functional groups for improved lithium-ion battery fabrication and performance, Journal of Materials Chemistry A, 7, (2019), 9646–9655, DOI: 10.1039/c9ta02244a [21] Reshma R.P., Abishek N.S., Naik Gopalakrishna K. (2024). Synthesis and characterization of graphene oxide, tin oxide, and reduced graphene oxide-tin oxide nanocomposites, Inorganic Chemistry Communications, Volume 165, 112451: ISSN 1387-7003 [22] Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB. (2012). Edge-carboxylated graphene nanosheets via ball milling, Proc Natl Acad Sci U S A, Volume 109 (15): 5588–5593, DOI:10.1073/pnas.1116897109 [23] Shi, G., Sherif A., Gibson C.T., Qingshi M., Zhu S., Jun M. (2018). Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications, Advanced Functional Materials. 28 (19), 1706705, DOI: 10.1002/adfm.201706705. [24] He, F., Lam, K., Ma, D., Fan, J., Chan, L. H. and Zhang, L. (2013). Fabrication of graphene nanosheet (GNS)-Fe3O4 hybrids and GNS-Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity, Carbon, 58: 175-184, DOI: 10.1016/j.carbon.2013.02.047 [25] Kováčik J., Emmer S. (2019). Cross property connection between the electric and the thermal conductivities of copper graphite composites, International Journal of Engineering Science, Volume 144, 103130, DOI: 10.1016/j.ijengsci.2019.103130. [26] Dong H., Qiao Y., Peng S., Li Y., Zhen Y., Tan W., Cheng Q., Wang Y. (2023). 2D material/epoxy composite coatings, a perspective from the regulation of 2D materials, Progress in Organic Coatings, Volume 183, 107817, ISSN 0300-9440, https://doi.org/10.1016/j.porgcoat.2023.107817. [27] Berhanuddin N.I.C., Zaman I., Rozlan S.A.M., Karim M.A.A., Manshoor B., Khalid A., Chan S.W. and Meng Q. (2017). Enhancement of mechanical properties of epoxy/graphene nanocomposite, Journal of Physics: Conference Series, 914(1), 012036, DOI: 10.1088/1742-6596/914/1/012036 [28] Peña-Consuegra, J., Pagnola, M.R., Useche, J. (2023). Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors, JOM 75: 631–645, DOI: 10.1007/s11837-022-05550-3 [29] McDonald J.R. (1992). Impedance Spectroscopy, Annals of Biomedical Engineering, Vol. 20: 289-305. [30] Dongil Shin, Peter Jefferson Creveling, Scott Alan Roberts, Rémi Dingreville. (2024). Deep material network for thermal conductivity problems: Application to woven composites, Computer Methods in Applied Mechanics and Engineering, Volume 431, 117279, https://doi.org/10.1016/j.cma.2024.117279 [31] Buck W., Rudtsch S. (2006). Thermal properties Czichos H., Saito T., Smith L. (Eds.), Springer handbook of materials measurement methods, Springer, Berlin, Heidelberg: 399-429 [32] Pagnola M.R, Useche J., Faig J.A., Ferrari S., Martínez García R. (2024). Study of the properties of a composite material Fe78Si9B13 / GNP in an epoxy matrix, Transactions on Energy Systems and Engineering Applications, 5 (1): 1-12, DOI: 10.32397/tesea.vol5.n1.593 [33] Pagnola M., Useche J. and Martinez Garcia R. (2023). Obtención de Fe78Si9B13/GNPL composite: Un estudio de propiedades, 21st LACCEI International Multi-Conference for Engineering, Education, and Technology, (Buenos Aires, Argentina), July 18. [34] Parker W J, Jenkins W J, Butler C P, Abbott G L. (1961). Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys. 32, 1679-1684 [35] Lin, B, Ban, H, Li, C, Scripa, RN, Su, C, & Lehoczky, SL. (2005). Method for Obtaining Thermal Conductivity From Modified Laser Flash Measurement. Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Heat Transfer, Part B. Orlando, Florida, USA. November 5–11: 725-730. ASME. https://doi.org/10.1115/IMECE2005-79932 [36] Tavman, İ.. (1991). Flash Method of Measuring Thermal Diffusivity and Conductivity, In: Kakaç, S., Kilkiş, B., Kulacki, F.A., Arinç, F. (eds) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, vol 196. Springer, Dordrecht, DOI:10.1007/978-94-011-3220-6_32 [37] Rosas Yescas, I., Acosta Cano de los Ríos, J. E., Chávez López, Óscar A., Méndez Herrera, C. A., Ambríz Díaz, V. M. (2023). Evaluación de la difusividad térmica efectiva en el estado transitorio de una geometría fractal para condiciones de temperatura y flujo de calor constantes, Ciencia Nicolaita, (89), 128-139, DOI:10.35830/cn.vi89.696 [38] Useche, J., Pagnola, M. (2024). Vibration analysis of functionally graded epoxy/graphene composite plates using the Boundary Element Method and new micromechanical model”, Mechanics of Advanced Materials and Structures: 1–11, DOI:10.1080/15376494.2024.2357264 [39] Useche J., Pagnola, M.R. (2024). Analytical Micromechanical Model, Consejo Nacional de Investigaciones Científicas y Técnicas. (Dataset), http://hdl.handle.net/11336/235587 [40] SANDOVAL F, IBAÑEZ A. 2000. Discusión sobre la influencia de la porosidad en la resistencia mecánica de las baldosas cerámicas, Bol. Soc. Esp. Cerám. Vidrio, 39 [2] : 255-258. [41] Cohen M.L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids, Phys. Rev. B, 32 (12), 7988 – 7991, DOI: 10.1103/PhysRevB.32.7988 [42] Wang, C. (2010). Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning, Graduate theses and dissertations, available at: DOI:10.31274/ETD-180810-12 [43] Hongwu International Group Ltd, Graphene Nanosheet - Technical datasheet: https://es.hwnanomaterial.com/graphene-nanosheet-for-high-heat-conduction-use_p522.html [44] Novák I., Kubičár L., Anibarro C., Vretenár V., Dieška P., Tavman I.H., Chodák I. (2014). Thermal Conductivity of Epoxy Resin Cross-Linking, THERMAM 2014 and 3rd ROSTOCKER SYMPOSIUM ON THERMOPHYSICAL PROPERTIES FOR TECHNICAL THERMODYNAMICS, 12-15 June , IZMIR, TURKEY [45] D.E.R.R 331 EPOXY RESIN - Technical datasheet: https://cstjmateriauxcomposites.wordpress.com/wp-content/uploads/2017/11/der331.pdf [46] Linseis-Epoxy - Thermal Conductivity - Technical datasheet: https://www.linseis.com/es/aplicaciones/polimeros/thb-100-epoxi-conductividad-termica/ [47] Solorzano E, Rodriguez-Perez M and Saja J. (2008). Thermal conductivity of cellular metals measured by the transient plane sour method Adv. Eng. Mater. 10 371–7 [48] Olivares P., Manríquez J. (2018). Comparative analysis of effective, artificial and real diffusivity in porous materials, REMETALLICA-UNIVERSIDAD DE SANTIAGO DE CHILE, Vol. 34 (22): 31-36, oai:ojs.pkp.sfu.ca:article/3822 [49] Ramirez, A.; Castaneda, J. and Pabon, E. (2011). Estudio de las relaciones entre parámetros estructurales de sistemas porosos desordenados y la difusividad efectiva mediante Monte Carlo Cinético, Rev. Fac. Ing. Univ. Antioquia, n.60: 42-50, http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302011000400005&lng=en&nrm=iso [50] Chen H, Ginzburg V V., Yang J, Yang Y, Liu W, Huang Y, Du L and Chen B. (2016). Thermal conductivity of polymer-based composites: fundamentals and applications Prog. Polym. Sci. 59 41–85 [51] Mu M., Wan C., McNally T. (2017). Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins”, 2D Mater. 4, 042001, https://doi.org/10.1088/2053-1583/aa7cd1. [52] Luping T. (1986). A study of the quantitative relationship between stregth and pore-size distribution of porous materials. Cem. and Conc. Res., 16: 87-96. [53] Progelhof R.C., Throne J.L., Ruetsch R.R. (1976). Methods for predicting the thermal conductivity of composite systems: A review, Polymer Engineering & Science, Vol.16, Issue9. 615-625, https://doi.org/10.1002/pen.760160905 [54] Pezzotti G. et al. (2000). Journal of the European Ceramic Society 20: 1197-1203 [55] Rohsenow W. Hartnett J., Cho Y. (1998). Handbook of Heat Transfer, 3rd. ed., Mc. Graw Hill, New York. [56] Carson, J.K. (2022). Modelling Thermal Diffusivity of Heterogeneous Materials Based on Thermal Diffusivities of Components with Implications for Thermal Diffusivity and Thermal Conductivity Measurement. Int J Thermophys 43, 108, https://doi.org/10.1007/s10765-022-03037-6 | eng |
| dc.rights | Marcelo Ruben Pagnola, Jairo Useche, Javier Faig, Ricardo Martinez García - 2025 | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | eng |
| dc.rights.creativecommons | This work is licensed under a Creative Commons Attribution 4.0 International License. | eng |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | eng |
| dc.source | https://revistas.utb.edu.co/tesea/article/view/902 | eng |
| dc.subject | Thermal conductivity | eng |
| dc.subject | Thermal diffusivity | eng |
| dc.subject | porosity | eng |
| dc.subject | epoxy | eng |
| dc.subject | composite | eng |
| dc.subject | Graphene Nanoplatelets | eng |
| dc.subject | Magnetic particles | eng |
| dc.title | Thermal conductivity determination in Fe78Si9B13/GNP/Epoxy composites by observation of samples and use of ad-hoc software: a new approximation methodology | spa |
| dc.title.translated | Thermal conductivity determination in Fe78Si9B13/GNP/Epoxy composites by observation of samples and use of ad-hoc software: a new approximation methodology | spa |
| dc.type | Artículo de revista | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
| dc.type.content | Text | eng |
| dc.type.driver | info:eu-repo/semantics/article | eng |
| dc.type.local | Journal article | eng |
| dc.type.version | info:eu-repo/semantics/publishedVersion | eng |