Crack Formation in Chill Block Melt Spinning Solidification Process: A Comparative Analysis Using OpenFOAM
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Pagnola, Marcelo | |
dc.contributor.author | Barceló, Luis Francisco | |
dc.contributor.author | Useche Vivero, Jairo | |
dc.date.accessioned | 2022-09-21T20:32:25Z | |
dc.date.available | 2022-09-21T20:32:25Z | |
dc.date.issued | 2022-01-12 | |
dc.date.submitted | 2022-09-13 | |
dc.description.abstract | The application of FeSiB family magnetic materials in the electrical or electronic industry has significantly increased owing to the development of amorphous and nanocrystalline metallic glasses using melt spinning and chill block melt spinning technology, which involves a rotating metal wheel with a high rotation speed. With this technique, a thin ribbon is obtained owing to the jet of liquid metal expelled from a casting nozzle at high pressure and temperature over the outer surface of the wheel. The cooling rates that can be achieved lead to disorder in the crystalline lattice of the metal, which is dependent on the chemical composition. As soon as the material jet is expelled by the nozzle, turbulence can occur in the solidification puddles. This generates defects and cracks in the solidification profile. In this study, numerically simulated ad hoc events in OPENFOAM are comparatively examined using a real process. | spa |
dc.format.extent | 8 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Pagnola, Marcelo & Barceló, Luis & Useche, Jairo. (2022). Crack Formation in Chill Block Melt Spinning Solidification Process: A Comparative Analysis Using OpenFOAM®. JOM. 74. 10.1007/s11837-021-05105-y. | spa |
dc.identifier.doi | https://doi.org/10.1007/s11837-021-05105-y | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11109 | |
dc.language.iso | eng | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Computational Design of Alloys for Energy Technologies - JOM, Vol. 74, No. 4, 2022 | spa |
dc.subject.armarc | LEMB | |
dc.subject.keywords | Tecnologías Energéticas | spa |
dc.subject.keywords | Industria eléctrica | spa |
dc.title | Crack Formation in Chill Block Melt Spinning Solidification Process: A Comparative Analysis Using OpenFOAM | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dcterms.bibliographicCitation | M. Carlen, D. Xu, J. Clausen, T. Nunn, V.R. Ramanan, and D.M. Getson, IEEE Pes T&D. https://doi.org/10.1109/TDC. 2010.5484301 (2010). | spa |
dcterms.bibliographicCitation | Mariusz Najgebauer, Krzysztof Chwastek, Jan Szczygłowski, PRZEGLA˛ D ELEKTROTECHNICZNY, R. 87 NR 2/2011, ISSN 0033-2097 | spa |
dcterms.bibliographicCitation | R. Hasegawa, and D. Azuma, J. Magn. Magn. Mater. 320(20), 2451 (2008) | spa |
dcterms.bibliographicCitation | D. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater. 501, 166373 (2020). | spa |
dcterms.bibliographicCitation | G.-X. Wang, and E.F. Matthys, Modelling Simul. Mater. Sci. Eng. 10, 35 (2001). | spa |
dcterms.bibliographicCitation | P.H. Steen, and C. Karcher, Annu. Rev. Fluid Mech. 29, 1. (1997). | spa |
dcterms.bibliographicCitation | K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Applied Physics. 70, 6232 (1991). | spa |
dcterms.bibliographicCitation | D. Muraca, J. Silveyra, M. Pagnola, and V. Cremaschi, J. Magn. Magn. Mater. 321(21), 3640 (2009). | spa |
dcterms.bibliographicCitation | Y. Nomura, J. Uzuhashi, T. Tomita, T. Takahashi, H. Kuwata, T. Abe, T. Ohkubo, and K. Hono, J. Alloys Comput. 859, 157832 (2021). | spa |
dcterms.bibliographicCitation | M. Pagnola, S. Preckel, H. Alvarez Barrios, Development of Numeric Simulation Model for Production Control a Melt Spinning Process of Amorphous Ribbon Used in Transformer Cores. Paper presented at the 2nd International Conference on Materials, Mechatronics and Automation, Hanbat National University, Korea, 22–24 November 2012. | spa |
dcterms.bibliographicCitation | M.R. Pagnola, M. Malmoria, M. Barone, and H. Sirkin, MMMS 10(4), 511 (2014). | spa |
dcterms.bibliographicCitation | A.G. Marrugo, M. Barone, J. Useche, M. Pagnola, OSA. The Optical Society, Paper LTh2C.5. (2016). | spa |
dcterms.bibliographicCitation | R.E. Napolitano, and H. Meco, Metal. Mater Trans A 35, 1539 (2004). | spa |
dcterms.bibliographicCitation | M. Pagnola, M. Malmoria, and M. Barone, ATE 103(1), 807 (2016). | spa |
dcterms.bibliographicCitation | M. Barone, F. Barcelo´, J. Useche, A. Larreteguy, and M. Pagnola, UIS 17(1), 185 (2017). | spa |
dcterms.bibliographicCitation | C. Wang, Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning (Iowa State University-Ames, Iowa, 2010), pp 1–138. | spa |
dcterms.bibliographicCitation | M. Barone, F. Barcelo´, M. Pagnola, A. Larreteguy, A. Marrugo, and J. Useche, Int. J Therm. Sci. 150, 106221 (2020) | spa |
dcterms.bibliographicCitation | J. Carpenter, and P. Steen, Int. J. Heat Mass Transf. 40(9), 1993 (1997). | spa |
dcterms.bibliographicCitation | M. Pagnola, M. Barone, M. Malmoria, and H. Sirkin, MMMS 11(1), 23 (2015). | spa |
dcterms.bibliographicCitation | G. Wang, and E. Matthys, Model. Simul. Mater. Sci. Eng. 10(1), 35 (2002). | spa |
dcterms.bibliographicCitation | V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, and S.G. Rassolov, Mater. Sci. Eng. A 323(1–2), 91 (2002). | spa |
dcterms.bibliographicCitation | G. Pozo Lopez, L.M. Fabietti, A.M. Condo, and S.E. Urreta, JMMM 322(20), 3088 (2010). | spa |
dcterms.bibliographicCitation | Y. Takata, H. Shirakawa, H. Sasaki, T. Kuroki, and T. Ito, Scripta Technica Heat Trans Asian Res. 28(1), 34 (1999). | spa |
dcterms.bibliographicCitation | M. Bussman, J. Mostaghimi, D.W. Kirk, and J.W. Graydon, Int. J. Heat Mass Transf. 45(19), 3997 (2002). | spa |
dcterms.bibliographicCitation | R. Dhadwal, Appl. Math. Model. 35(6), 2959 (2011). | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |