Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.audience | Investigadores | spa |
dc.contributor.author | Jimenez, Diego Javier | |
dc.contributor.author | Chaparro, Dayanne | |
dc.contributor.author | Sierra, Felipe | |
dc.contributor.author | Custer, Gordon F. | |
dc.contributor.author | Feuerriegel, Golo | |
dc.contributor.author | Chuvochina, Maria | |
dc.contributor.author | Diaz-García, Laura | |
dc.contributor.author | Mendes, Lucas William | |
dc.contributor.author | Ortega Santiago, Yina Paola | |
dc.contributor.author | Rubiano-Labrador, Carolina | |
dc.contributor.author | Salcedo Galán, Felipe | |
dc.contributor.author | Streit, Wolfgang R. | |
dc.contributor.author | Dini-Andreote, Francisco | |
dc.contributor.author | Reyes, Alejandro | |
dc.contributor.author | Soares Rosado, Alexandre | |
dc.date.accessioned | 2024-10-15T16:33:56Z | |
dc.date.available | 2024-10-15T16:33:56Z | |
dc.date.issued | 2024-10-14 | |
dc.date.submitted | 2024-10-15 | |
dc.description.abstract | Mangroves are impacted by multiple environmental stressors, including sea level rise, erosion, and plastic pollution. Thus, mangrove soil may be an excellent source of as yet unknown plastic-transforming microorganisms. Here, we assess the impact of polyethylene terephthalate (PET) particles and seawater intrusion on the mangrove soil microbiome and report an enrichment culture experiment to artifi- cially select PET-transforming microbial consortia. The analysis of metagenomeassembled genomes of two bacterial consortia revealed that PET catabolism can be performed by multiple taxa, of which particular species harbored putative novel PET-active hydrolases. A key member of these consortia (Mangrovimarina plasticivorans gen. nov., sp. nov.) was found to contain two genes encoding monohydroxyethyl terephthalate hydrolases. This study provides insights into the development of strategies for harnessing soil microbiomes, thereby advancing our understanding of the ecology and enzymology involved in microbial-mediated PET transformations in marine-associated systems. | spa |
dc.description.sponsorship | Universidad de Los Andes | spa |
dc.format.extent | 22 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Jiménez, D. J., Chaparro, D., Sierra, F., Custer, G. F., Feuerriegel, G., Chuvochina, M., ... & Rosado, A. S. (2024). Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia. Trends in Biotechnology. | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.issn | 1879-3096 | |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12751 | |
dc.language.iso | eng | spa |
dc.publisher.faculty | Ciencias Básicas | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.sede | Campus Tecnológico | spa |
dc.relation.iscitedby | No aplica | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Trends in Biotechnology | spa |
dc.subject.armarc | LEMB | |
dc.subject.keywords | Enzymes | spa |
dc.subject.keywords | Mangrove | spa |
dc.subject.keywords | PET | spa |
dc.title | Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia | spa |
dc.title.alternative | Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dcterms.bibliographicCitation | Andreote, F.D. et al. (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7, e38600 | spa |
dcterms.bibliographicCitation | Allard, S.M. et al. (2020) Introducing the Mangrove Microbiome Initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems 5, e00658–20 | spa |
dcterms.bibliographicCitation | Anu, K. et al. (2024) Mangroves in environmental engineering: Harnessing the multifunctional potential of Nature's coastal architects for sustainable ecosystem management. Results Eng. 21, 101765 | spa |
dcterms.bibliographicCitation | van Bijsterveldt, C.E.J. et al. (2021) Does plastic waste kill mangroves? A field experiment to assess the impact of macro plastics on mangrove growth, stress response and survival. Sci. Total Environ. 756, 143826 | spa |
dcterms.bibliographicCitation | Goldberg, L. et al. (2020) Global declines in human-driven mangrove loss. Glob. Chang. Biol. 26, 5844–5855 | spa |
dcterms.bibliographicCitation | Rillig, M.C. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 | spa |
dcterms.bibliographicCitation | Garcés-Ordóñez, O. et al. (2019) Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Mar. Pollut. Bull. 145, 455–462 | spa |
dcterms.bibliographicCitation | Martin, C. et al. (2020) Exponential increase of plastic burial in mangrove sediments as a major plastic sink. Sci. Adv. 6, eaaz5593 | spa |
dcterms.bibliographicCitation | Deng, H. et al. (2021) Microplastics pollution in mangrove ecosystems: a critical review of current knowledge and future directions. Sci. Total Environ. 753, 142041 | spa |
dcterms.bibliographicCitation | Lear, G. et al. (2021) Plastics and the microbiome: impacts and solutions. Environ. Microbiome 16, 2 | spa |
dcterms.bibliographicCitation | Jiménez, D.J. et al. (2022) Merging plastics, microbes, and enzymes: highlights from an international workshop. Appl. Environ. Microbiol. 88, e00721–22 | spa |
dcterms.bibliographicCitation | Rillig, M.C. et al. (2023) The soil plastisphere. Nat. Rev. Microbiol. 22, 64–74 | spa |
dcterms.bibliographicCitation | Jiménez, D.J. et al. (2015) Compositional profile of α / β- hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microb. Biotechnol. 8, 604–613 | spa |
dcterms.bibliographicCitation | Auta, H.S. et al. (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 127, 15–21 | spa |
dcterms.bibliographicCitation | Chen, C.-C. et al. (2020) Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 | spa |
dcterms.bibliographicCitation | Ren, S.Y. and Ni, H.G. (2023) Biodeterioration of microplastics by bacteria isolated from mangrove sediment. Toxics 11, 432 | spa |
dcterms.bibliographicCitation | Wang, Y. et al. (2023) Consequences of microplastics on global ecosystem structure and function. Rev. Env. Contam. (formerly: Residue Reviews) 261, 22 | spa |
dcterms.bibliographicCitation | Yang, G. et al. (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat. Commun. 13, 4260 | spa |
dcterms.bibliographicCitation | Sun, Y. et al. (2023) Plastisphere microbiome: methodology, diversity, and functionality. iMeta 2, e101 | spa |
dcterms.bibliographicCitation | Lozano, Y.M. et al. (2024) Microplastic fibres affect soil fungal communities depending on drought conditions with consequences for ecosystem functions. Environ. Microbiol. 26, e16549 | spa |
dcterms.bibliographicCitation | Yuan, Y. et al. (2023) Soil properties, microbial diversity, and changes in the functionality of saline-alkali soil are driven by microplastics. J. Hazard. Mater. 446, 130712 | spa |
dcterms.bibliographicCitation | Chamas, A. et al. (2020) Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 | spa |
dcterms.bibliographicCitation | Yoshida, S. et al. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 | spa |
dcterms.bibliographicCitation | Danso, D. et al. (2018) New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84, e02773–17 | spa |
dcterms.bibliographicCitation | Erickson, E. et al. (2022) Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nat. Commun. 13, 7850 | spa |
dcterms.bibliographicCitation | Qi, X. et al. (2023) Glacier as a source of novel polyethylene terephthalate hydrolases. Environ. Microbiol. 25, 2822–2833 | spa |
dcterms.bibliographicCitation | Khairul Anuar, N.F.S. et al. (2022) An overview into polyethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation. Int. J. Mol. Sci. 23, 12644 | spa |
dcterms.bibliographicCitation | Jayasekara, S.K. et al. (2023) Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput. Struct. Biotechnol. J. 21, 3513–3521 | spa |
dcterms.bibliographicCitation | Arnal, G. et al. (2023) Assessment of four engineered PET degrading enzymes considering large-scale industrial applications. ACS Catal. 13, 13156–13166 | spa |
dcterms.bibliographicCitation | Qi, X. et al. (2021) Evaluation of PET degradation using artificial microbial consortia. Front. Microbiol. 12, 778828 | spa |
dcterms.bibliographicCitation | Roberts, C. et al. (2020) Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic. mSphere 5, 01151–20 | spa |
dcterms.bibliographicCitation | Bao, T. et al. (2023) Engineering microbial division of labor for plastic upcycling. Nat. Commun. 14, 5712 | spa |
dcterms.bibliographicCitation | Jiang, W. et al. (2023) Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capable of catabolism bis (2-hydroxyethyl) terephthalate. Environ. Res. 238, 117240 | spa |
dcterms.bibliographicCitation | Jiménez, D.J. et al. (2024) Engineering microbiomes to transform plastics. Trends Biotechnol. 42, 265–268 | spa |
dcterms.bibliographicCitation | Salinas, J. et al. (2023) Development of plastic-degrading microbial consortia by induced selection in microcosms. Front. Microbiol. 14, 1143769 | spa |
dcterms.bibliographicCitation | Zhao, S. et al. (2023) Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ. Microbiol. 25, 2719–2731 | spa |
dcterms.bibliographicCitation | Hu, H. et al. (2022) Guided by the principles of microbiome engineering: accomplishments and perspectives for environmental use. mLife 1, 382–398 | spa |
dcterms.bibliographicCitation | Díaz-García, L. et al. (2021) Top-down enrichment strategy to cocultivate lactic acid and lignocellulolytic bacteria From the Megathyrsus maximus phyllosphere. Front. Microbiol. 12, 744075 | spa |
dcterms.bibliographicCitation | Sánchez, Á. et al. (2024) The optimization of microbial functions through rational environmental manipulations. Mol. Microbiol., Published online February 19, 2024. https://doi.org/10.1111/ mmi.15236 | spa |
dcterms.bibliographicCitation | Díaz-García, L. et al. (2024) Andean soil-derived lignocellulolytic bacterial consortium as a source of novel taxa and putative plastic-active enzymes. Syst. Appl. Microbiol. 47, 126485 | spa |
dcterms.bibliographicCitation | Jiménez, D.J. et al. (2014) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl. Microbiol. Biotechnol. 98, 2789–2803 | spa |
dcterms.bibliographicCitation | Arias-Sánchez, F.I. et al. (2019) Artificially selecting microbial communities: if we can breed dogs, why not microbiomes? PLoS Biol. 17, e3000356 | spa |
dcterms.bibliographicCitation | Rillig, M.C. et al. (2016) Soil microbes and community coalescence. Pedobiologia 59, 37–40 | spa |
dcterms.bibliographicCitation | Custer, G.F. et al. (2024) Toward an integrative framework for microbial community coalescence. Trends Microbiol. 32, 241–251 | spa |
dcterms.bibliographicCitation | Châtillon, E. et al. (2023) New insights into microbial community coalescence in the land-sea continuum. Microbiol. Res. 267, 127259 | spa |
dcterms.bibliographicCitation | Huet, S. et al. (2023) Experimental community coalescence sheds light on microbial interactions in soil and restores impaired functions. Microbiome 11, 42 | spa |
dcterms.bibliographicCitation | de Souza Machado, A.A. et al. (2018) Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 | spa |
dcterms.bibliographicCitation | Jacquin, J. et al. (2021) Microbial diversity and activity during the biodegradation in seawater of various substitutes to conventional plastic cotton swab sticks. Front. Microbiol. 12, 604395 | spa |
dcterms.bibliographicCitation | Pinto, M. et al. (2022) Microbial consortiums of putative degraders of low-density polyethylene-associated compounds in the ocean. mSystems 7, e01415–21 | spa |
dcterms.bibliographicCitation | Pinto, M. et al. (2020) Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environment. Environ. Microbiol. 22, 4779–4793 | spa |
dcterms.bibliographicCitation | Castledine, M. et al. (2020) Community coalescence: an ecoevolutionary perspective. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 375, 20190252 | spa |
dcterms.bibliographicCitation | Meyer-Cifuentes, I.E. et al. (2020) Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nat. Commun. 11, 5790 | spa |
dcterms.bibliographicCitation | James-Pearson, L.F. et al. (2023) A hot topic: thermophilic plastic biodegradation. Trends Biotechnol. 41, 1117–1126 | spa |
dcterms.bibliographicCitation | Koike, H. et al. (2023) Alcanivorax bacteria as important polypropylene degraders in mesopelagic environments. Appl. Environ. Microbiol. 89, e01365–23 | spa |
dcterms.bibliographicCitation | Zadjelovic, V. et al. (2022) A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. J. Hazard. Mater. 436, 129278 | spa |
dcterms.bibliographicCitation | Kurm, V. et al. (2016) Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology 98, 555–564 | spa |
dcterms.bibliographicCitation | Kato, S. et al. (2018) Isolation of previously uncultured slowgrowing bacteria by using a simple modification in the preparation of agar media. Appl. Environ. Microbiol. 84, e00807–18 | spa |
dcterms.bibliographicCitation | Schaerer, L.G. et al. (2023) Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste. J. Ind. Microbiol. Biotech. 50, kuad008 | spa |
dcterms.bibliographicCitation | Schaerer, L. et al. (2023) Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial communities. Microbiome 11, 224 | spa |
dcterms.bibliographicCitation | Skariyachan, S. et al. (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 149, 52–68 | spa |
dcterms.bibliographicCitation | Dimassi, S.N. et al. (2023) Insights into the degradation mechanism of PET and PP under marine conditions using FTIR. J. Hazard. Mater. 447, 130796 | spa |
dcterms.bibliographicCitation | Kotova, I.B. et al. (2021) Microbial degradation of plastics and approaches to make it more efficient. Microbiology 90, 671–701 | spa |
dcterms.bibliographicCitation | Sriromreun, P. et al. (2013) Standard methods for characterizations of structure and hydrolytic degradation of aliphatic/aromatic copolyesters. Polym. Degrad. Stab. 98, 169–176 | spa |
dcterms.bibliographicCitation | Xia, X.l. et al. (2014) Degradation behaviors, thermostability and mechanical properties of poly (ethylene terephthalate)/polylactic acid blends. J. Cent. South Univ. 21, 1725–1732 | spa |
dcterms.bibliographicCitation | Obrador-Viel, T. et al. (2024) Assessing microbial plastic degradation requires robust methods. Microb. Biotechnol. 17, e14457 | spa |
dcterms.bibliographicCitation | Sander, M. et al. (2019) Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nat. Nanotechnol. 14, 301–303 | spa |
dcterms.bibliographicCitation | Wang, P. et al. (2023) Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. J. Hazard. Mater. 442, 130045 | spa |
dcterms.bibliographicCitation | Wang, X. et al. (2019) Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: an in-silico approach. Chemosphere 231, 126–133 | spa |
dcterms.bibliographicCitation | Meng, D. et al. (2021) Mesorhizobium xinjiangense sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Arch. Microbiol. 204, 29 | spa |
dcterms.bibliographicCitation | Tariq, A. et al. (2022) Alhagi sparsifolia: an ideal phreatophyte for combating desertification and land degradation. Sci. Total Environ. 844, 157228 | spa |
dcterms.bibliographicCitation | Ye, Y. et al. (2020) Nitratireductor mangrovi sp. nov., a nitratereducing bacterium isolated from mangrove soil. Curr. Microbiol. 77, 1334–1340 | spa |
dcterms.bibliographicCitation | Pan, X.C. et al. (2014) Nitratireductor shengliensis sp. nov., isolated from an oil-polluted saline soil. Curr. Microbiol. 69, 561–566 | spa |
dcterms.bibliographicCitation | Marasco, R. et al. (2023) The identification of the new species Nitratireductor thuwali sp. nov. reveals the untapped diversity of hydrocarbon-degrading culturable bacteria from the arid mangrove sediments of the Red Sea. Front. Microbiol. 14, 1155381 | spa |
dcterms.bibliographicCitation | Hedlund, B.P. et al. (2022) SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 | spa |
dcterms.bibliographicCitation | Sasoh, M. et al. (2006) Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl. Environ. Microbiol. 72, 1825–1832 | spa |
dcterms.bibliographicCitation | Putman, L.I. et al. (2023) Deconstructed plastic substrate preferences of microbial populations from the natural environment. Microbiol. Spectr. 11, e0036223 | spa |
dcterms.bibliographicCitation | Buchholz, P.C.F. et al. (2022) Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins 90, 1443–1456 | spa |
dcterms.bibliographicCitation | Alam, I. et al. (2020) Rapid evolution of plastic-degrading enzymes prevalent in the global ocean. bioRxiv, Published online September 9, 2020. https://doi.org/10.1101/2020.09.07.285692 | spa |
dcterms.bibliographicCitation | Maruthamuthu, M. et al. (2017) Characterization of a furan aldehydetolerant β-xylosidase/α-arabinosidase obtained through a synthetic metagenomics approach. J. Appl. Microbiol. 123, 145–158 | spa |
dcterms.bibliographicCitation | Callahan, B.J. et al. (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 | spa |
dcterms.bibliographicCitation | Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 | spa |
dcterms.bibliographicCitation | Kursa, M.B. and Rudnicki, W.R. (2010) Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 | spa |
dcterms.bibliographicCitation | Love, M.I. et al. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 | spa |
dcterms.bibliographicCitation | Friedman, J. and Alm, E.J. (2012) Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 | spa |
dcterms.bibliographicCitation | Bastian, M. et al. (2009) Gephi: an open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Weblogs. Soc. Media 3, 361–362 | spa |
dcterms.bibliographicCitation | Díaz-García, L. et al. (2021) Dilution-to-stimulation/extinction method: a combination enrichment strategy to develop a minimal and versatile lignocellulolytic bacterial consortium. Appl. Environ. Microbiol. 87, e02427–20 | spa |
dcterms.bibliographicCitation | Bolyen, E. et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 | spa |
dcterms.bibliographicCitation | Yilmaz, P. et al. (2014) The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 | spa |
dcterms.bibliographicCitation | Lessa Belone, M.C. et al. (2021) Degradation of common polymers in sewage sludge purification process developed for microplastic analysis. Environ. Pollut. 269, 116235 | spa |
dcterms.bibliographicCitation | Menzel, P. et al. (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 | spa |
dcterms.bibliographicCitation | Li, D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 | spa |
dcterms.bibliographicCitation | Alneberg, J. et al. (2014) Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 | spa |
dcterms.bibliographicCitation | Kang, D.D. et al. (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 | spa |
dcterms.bibliographicCitation | Wu, Y.-W. et al. (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 | spa |
dcterms.bibliographicCitation | Sieber, C.M.K. et al. (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 | spa |
dcterms.bibliographicCitation | Parks, D.H. et al. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 | spa |
dcterms.bibliographicCitation | Tanizawa, Y. et al. (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34, 1037–1039 | spa |
dcterms.bibliographicCitation | Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 | spa |
dcterms.bibliographicCitation | Danecek, P. et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 | spa |
dcterms.bibliographicCitation | Chaumeil, P.-A. et al. (2022) GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 | spa |
dcterms.bibliographicCitation | Rodriguez-R, L.M. et al. (2018) The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 | spa |
dcterms.bibliographicCitation | Meier-Kolthoff, J. and Göker, M. (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 2182 | spa |
dcterms.bibliographicCitation | Meier-Kolthoff, J. et al. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 14, 60 | spa |
dcterms.bibliographicCitation | Nguyen, L.T. et al. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 | spa |
dcterms.bibliographicCitation | Letunic, I. and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 | spa |
dcterms.bibliographicCitation | Fu, L. et al. (2012) CD-HIT: accelerated for clustering the nextgeneration sequencing data. Bioinformatics 28, 3150–3152 | spa |
dcterms.bibliographicCitation | Buchfink, B. et al. (2015) Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 | spa |
dcterms.bibliographicCitation | Aramaki, T. et al. (2020) KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 | spa |
dcterms.bibliographicCitation | Sulaiman, S. et al. (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leafbranch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556–1562 | spa |
dcterms.bibliographicCitation | Furukawa, M. et al. (2019) Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 9, 16038 | spa |
dcterms.bibliographicCitation | Zallot, R. et al. (2019) The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 | spa |
dcterms.bibliographicCitation | Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 | spa |
dcterms.bibliographicCitation | Anderson, M.J. and Walsh, D.C.I. (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 | spa |
dcterms.bibliographicCitation | Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |