Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audienceInvestigadoresspa
dc.contributor.authorJimenez, Diego Javier
dc.contributor.authorChaparro, Dayanne
dc.contributor.authorSierra, Felipe
dc.contributor.authorCuster, Gordon F.
dc.contributor.authorFeuerriegel, Golo
dc.contributor.authorChuvochina, Maria
dc.contributor.authorDiaz-García, Laura
dc.contributor.authorMendes, Lucas William
dc.contributor.authorOrtega Santiago, Yina Paola
dc.contributor.authorRubiano-Labrador, Carolina
dc.contributor.authorSalcedo Galán, Felipe
dc.contributor.authorStreit, Wolfgang R.
dc.contributor.authorDini-Andreote, Francisco
dc.contributor.authorReyes, Alejandro
dc.contributor.authorSoares Rosado, Alexandre
dc.date.accessioned2024-10-15T16:33:56Z
dc.date.available2024-10-15T16:33:56Z
dc.date.issued2024-10-14
dc.date.submitted2024-10-15
dc.description.abstractMangroves are impacted by multiple environmental stressors, including sea level rise, erosion, and plastic pollution. Thus, mangrove soil may be an excellent source of as yet unknown plastic-transforming microorganisms. Here, we assess the impact of polyethylene terephthalate (PET) particles and seawater intrusion on the mangrove soil microbiome and report an enrichment culture experiment to artifi- cially select PET-transforming microbial consortia. The analysis of metagenome￾assembled genomes of two bacterial consortia revealed that PET catabolism can be performed by multiple taxa, of which particular species harbored putative novel PET-active hydrolases. A key member of these consortia (Mangrovimarina plasticivorans gen. nov., sp. nov.) was found to contain two genes encoding monohydroxyethyl terephthalate hydrolases. This study provides insights into the development of strategies for harnessing soil microbiomes, thereby advancing our understanding of the ecology and enzymology involved in microbial-mediated PET transformations in marine-associated systems.spa
dc.description.sponsorshipUniversidad de Los Andesspa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJiménez, D. J., Chaparro, D., Sierra, F., Custer, G. F., Feuerriegel, G., Chuvochina, M., ... & Rosado, A. S. (2024). Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia. Trends in Biotechnology.spa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.issn1879-3096
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12751
dc.language.isoengspa
dc.publisher.facultyCiencias Básicasspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa
dc.relation.iscitedbyNo aplica
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceTrends in Biotechnologyspa
dc.subject.armarcLEMB
dc.subject.keywordsEnzymesspa
dc.subject.keywordsMangrovespa
dc.subject.keywordsPETspa
dc.titleEngineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortiaspa
dc.title.alternativeEngineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortiaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dcterms.bibliographicCitationAndreote, F.D. et al. (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7, e38600spa
dcterms.bibliographicCitationAllard, S.M. et al. (2020) Introducing the Mangrove Microbiome Initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosys￾tems. mSystems 5, e00658–20spa
dcterms.bibliographicCitationAnu, K. et al. (2024) Mangroves in environmental engineering: Harnessing the multifunctional potential of Nature's coastal architects for sustainable ecosystem management. Results Eng. 21, 101765spa
dcterms.bibliographicCitationvan Bijsterveldt, C.E.J. et al. (2021) Does plastic waste kill man￾groves? A field experiment to assess the impact of macro plastics on mangrove growth, stress response and survival. Sci. Total Environ. 756, 143826spa
dcterms.bibliographicCitationGoldberg, L. et al. (2020) Global declines in human-driven mangrove loss. Glob. Chang. Biol. 26, 5844–5855spa
dcterms.bibliographicCitationRillig, M.C. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890spa
dcterms.bibliographicCitationGarcés-Ordóñez, O. et al. (2019) Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Mar. Pollut. Bull. 145, 455–462spa
dcterms.bibliographicCitationMartin, C. et al. (2020) Exponential increase of plastic burial in mangrove sediments as a major plastic sink. Sci. Adv. 6, eaaz5593spa
dcterms.bibliographicCitationDeng, H. et al. (2021) Microplastics pollution in mangrove eco￾systems: a critical review of current knowledge and future direc￾tions. Sci. Total Environ. 753, 142041spa
dcterms.bibliographicCitationLear, G. et al. (2021) Plastics and the microbiome: impacts and solutions. Environ. Microbiome 16, 2spa
dcterms.bibliographicCitationJiménez, D.J. et al. (2022) Merging plastics, microbes, and enzymes: highlights from an international workshop. Appl. Environ. Microbiol. 88, e00721–22spa
dcterms.bibliographicCitationRillig, M.C. et al. (2023) The soil plastisphere. Nat. Rev. Microbiol. 22, 64–74spa
dcterms.bibliographicCitationJiménez, D.J. et al. (2015) Compositional profile of α / β- hydrolase fold proteins in mangrove soil metagenomes: preva￾lence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microb. Biotechnol. 8, 604–613spa
dcterms.bibliographicCitationAuta, H.S. et al. (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 127, 15–21spa
dcterms.bibliographicCitationChen, C.-C. et al. (2020) Enzymatic degradation of plant bio￾mass and synthetic polymers. Nat. Rev. Chem. 4, 114–126spa
dcterms.bibliographicCitationRen, S.Y. and Ni, H.G. (2023) Biodeterioration of microplastics by bacteria isolated from mangrove sediment. Toxics 11, 432spa
dcterms.bibliographicCitationWang, Y. et al. (2023) Consequences of microplastics on global ecosystem structure and function. Rev. Env. Contam. (formerly: Residue Reviews) 261, 22spa
dcterms.bibliographicCitationYang, G. et al. (2022) Multiple anthropogenic pressures elimi￾nate the effects of soil microbial diversity on ecosystem func￾tions in experimental microcosms. Nat. Commun. 13, 4260spa
dcterms.bibliographicCitationSun, Y. et al. (2023) Plastisphere microbiome: methodology, diversity, and functionality. iMeta 2, e101spa
dcterms.bibliographicCitationLozano, Y.M. et al. (2024) Microplastic fibres affect soil fungal communities depending on drought conditions with conse￾quences for ecosystem functions. Environ. Microbiol. 26, e16549spa
dcterms.bibliographicCitationYuan, Y. et al. (2023) Soil properties, microbial diversity, and changes in the functionality of saline-alkali soil are driven by microplastics. J. Hazard. Mater. 446, 130712spa
dcterms.bibliographicCitationChamas, A. et al. (2020) Degradation rates of plastics in the envi￾ronment. ACS Sustain. Chem. Eng. 8, 3494–3511spa
dcterms.bibliographicCitationYoshida, S. et al. (2016) A bacterium that degrades and assimi￾lates poly(ethylene terephthalate). Science 351, 1196–1199spa
dcterms.bibliographicCitationDanso, D. et al. (2018) New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84, e02773–17spa
dcterms.bibliographicCitationErickson, E. et al. (2022) Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nat. Commun. 13, 7850spa
dcterms.bibliographicCitationQi, X. et al. (2023) Glacier as a source of novel polyethylene terephthalate hydrolases. Environ. Microbiol. 25, 2822–2833spa
dcterms.bibliographicCitationKhairul Anuar, N.F.S. et al. (2022) An overview into poly￾ethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation. Int. J. Mol. Sci. 23, 12644spa
dcterms.bibliographicCitationJayasekara, S.K. et al. (2023) Trends in in-silico guided engi￾neering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput. Struct. Biotechnol. J. 21, 3513–3521spa
dcterms.bibliographicCitationArnal, G. et al. (2023) Assessment of four engineered PET degrading enzymes considering large-scale industrial applica￾tions. ACS Catal. 13, 13156–13166spa
dcterms.bibliographicCitationQi, X. et al. (2021) Evaluation of PET degradation using artificial microbial consortia. Front. Microbiol. 12, 778828spa
dcterms.bibliographicCitationRoberts, C. et al. (2020) Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic. mSphere 5, 01151–20spa
dcterms.bibliographicCitationBao, T. et al. (2023) Engineering microbial division of labor for plastic upcycling. Nat. Commun. 14, 5712spa
dcterms.bibliographicCitationJiang, W. et al. (2023) Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capa￾ble of catabolism bis (2-hydroxyethyl) terephthalate. Environ. Res. 238, 117240spa
dcterms.bibliographicCitationJiménez, D.J. et al. (2024) Engineering microbiomes to trans￾form plastics. Trends Biotechnol. 42, 265–268spa
dcterms.bibliographicCitationSalinas, J. et al. (2023) Development of plastic-degrading microbial consortia by induced selection in microcosms. Front. Microbiol. 14, 1143769spa
dcterms.bibliographicCitationZhao, S. et al. (2023) Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ. Microbiol. 25, 2719–2731spa
dcterms.bibliographicCitationHu, H. et al. (2022) Guided by the principles of microbiome en￾gineering: accomplishments and perspectives for environmen￾tal use. mLife 1, 382–398spa
dcterms.bibliographicCitationDíaz-García, L. et al. (2021) Top-down enrichment strategy to co￾cultivate lactic acid and lignocellulolytic bacteria From the Megathyrsus maximus phyllosphere. Front. Microbiol. 12, 744075spa
dcterms.bibliographicCitationSánchez, Á. et al. (2024) The optimization of microbial functions through rational environmental manipulations. Mol. Microbiol., Published online February 19, 2024. https://doi.org/10.1111/ mmi.15236spa
dcterms.bibliographicCitationDíaz-García, L. et al. (2024) Andean soil-derived lignocellulolytic bacterial consortium as a source of novel taxa and putative plastic-active enzymes. Syst. Appl. Microbiol. 47, 126485spa
dcterms.bibliographicCitationJiménez, D.J. et al. (2014) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconver￾sion. Appl. Microbiol. Biotechnol. 98, 2789–2803spa
dcterms.bibliographicCitationArias-Sánchez, F.I. et al. (2019) Artificially selecting microbial communities: if we can breed dogs, why not microbiomes? PLoS Biol. 17, e3000356spa
dcterms.bibliographicCitationRillig, M.C. et al. (2016) Soil microbes and community coales￾cence. Pedobiologia 59, 37–40spa
dcterms.bibliographicCitationCuster, G.F. et al. (2024) Toward an integrative framework for microbial community coalescence. Trends Microbiol. 32, 241–251spa
dcterms.bibliographicCitationChâtillon, E. et al. (2023) New insights into microbial community co￾alescence in the land-sea continuum. Microbiol. Res. 267, 127259spa
dcterms.bibliographicCitationHuet, S. et al. (2023) Experimental community coalescence sheds light on microbial interactions in soil and restores im￾paired functions. Microbiome 11, 42spa
dcterms.bibliographicCitationde Souza Machado, A.A. et al. (2018) Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665spa
dcterms.bibliographicCitationJacquin, J. et al. (2021) Microbial diversity and activity during the biodegradation in seawater of various substitutes to conventional plastic cotton swab sticks. Front. Microbiol. 12, 604395spa
dcterms.bibliographicCitationPinto, M. et al. (2022) Microbial consortiums of putative degraders of low-density polyethylene-associated compounds in the ocean. mSystems 7, e01415–21spa
dcterms.bibliographicCitationPinto, M. et al. (2020) Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environ￾ment. Environ. Microbiol. 22, 4779–4793spa
dcterms.bibliographicCitationCastledine, M. et al. (2020) Community coalescence: an eco￾evolutionary perspective. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 375, 20190252spa
dcterms.bibliographicCitationMeyer-Cifuentes, I.E. et al. (2020) Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nat. Commun. 11, 5790spa
dcterms.bibliographicCitationJames-Pearson, L.F. et al. (2023) A hot topic: thermophilic plastic biodegradation. Trends Biotechnol. 41, 1117–1126spa
dcterms.bibliographicCitationKoike, H. et al. (2023) Alcanivorax bacteria as important polypropylene degraders in mesopelagic environments. Appl. Environ. Microbiol. 89, e01365–23spa
dcterms.bibliographicCitationZadjelovic, V. et al. (2022) A mechanistic understanding of poly￾ethylene biodegradation by the marine bacterium Alcanivorax. J. Hazard. Mater. 436, 129278spa
dcterms.bibliographicCitationKurm, V. et al. (2016) Low abundant soil bacteria can be meta￾bolically versatile and fast growing. Ecology 98, 555–564spa
dcterms.bibliographicCitationKato, S. et al. (2018) Isolation of previously uncultured slow￾growing bacteria by using a simple modification in the prepara￾tion of agar media. Appl. Environ. Microbiol. 84, e00807–18spa
dcterms.bibliographicCitationSchaerer, L.G. et al. (2023) Versatile microbial communities rap￾idly assimilate ammonium hydroxide-treated plastic waste. J. Ind. Microbiol. Biotech. 50, kuad008spa
dcterms.bibliographicCitationSchaerer, L. et al. (2023) Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial commu￾nities. Microbiome 11, 224spa
dcterms.bibliographicCitationSkariyachan, S. et al. (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 149, 52–68spa
dcterms.bibliographicCitationDimassi, S.N. et al. (2023) Insights into the degradation mecha￾nism of PET and PP under marine conditions using FTIR. J. Hazard. Mater. 447, 130796spa
dcterms.bibliographicCitationKotova, I.B. et al. (2021) Microbial degradation of plastics and approaches to make it more efficient. Microbiology 90, 671–701spa
dcterms.bibliographicCitationSriromreun, P. et al. (2013) Standard methods for characteriza￾tions of structure and hydrolytic degradation of aliphatic/aromatic copolyesters. Polym. Degrad. Stab. 98, 169–176spa
dcterms.bibliographicCitationXia, X.l. et al. (2014) Degradation behaviors, thermostability and mechanical properties of poly (ethylene terephthalate)/polylactic acid blends. J. Cent. South Univ. 21, 1725–1732spa
dcterms.bibliographicCitationObrador-Viel, T. et al. (2024) Assessing microbial plastic degrada￾tion requires robust methods. Microb. Biotechnol. 17, e14457spa
dcterms.bibliographicCitationSander, M. et al. (2019) Assessing the environmental transfor￾mation of nanoplastic through 13C-labelled polymers. Nat. Nanotechnol. 14, 301–303spa
dcterms.bibliographicCitationWang, P. et al. (2023) Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. J. Hazard. Mater. 442, 130045spa
dcterms.bibliographicCitationWang, X. et al. (2019) Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: an in-silico approach. Chemosphere 231, 126–133spa
dcterms.bibliographicCitationMeng, D. et al. (2021) Mesorhizobium xinjiangense sp. nov., iso￾lated from rhizosphere soil of Alhagi sparsifolia. Arch. Microbiol. 204, 29spa
dcterms.bibliographicCitationTariq, A. et al. (2022) Alhagi sparsifolia: an ideal phreatophyte for combating desertification and land degradation. Sci. Total Environ. 844, 157228spa
dcterms.bibliographicCitationYe, Y. et al. (2020) Nitratireductor mangrovi sp. nov., a nitrate￾reducing bacterium isolated from mangrove soil. Curr. Microbiol. 77, 1334–1340spa
dcterms.bibliographicCitationPan, X.C. et al. (2014) Nitratireductor shengliensis sp. nov., iso￾lated from an oil-polluted saline soil. Curr. Microbiol. 69, 561–566spa
dcterms.bibliographicCitationMarasco, R. et al. (2023) The identification of the new species Nitratireductor thuwali sp. nov. reveals the untapped diversity of hydrocarbon-degrading culturable bacteria from the arid man￾grove sediments of the Red Sea. Front. Microbiol. 14, 1155381spa
dcterms.bibliographicCitationHedlund, B.P. et al. (2022) SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708spa
dcterms.bibliographicCitationSasoh, M. et al. (2006) Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl. Environ. Microbiol. 72, 1825–1832spa
dcterms.bibliographicCitationPutman, L.I. et al. (2023) Deconstructed plastic substrate prefer￾ences of microbial populations from the natural environment. Microbiol. Spectr. 11, e0036223spa
dcterms.bibliographicCitationBuchholz, P.C.F. et al. (2022) Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins 90, 1443–1456spa
dcterms.bibliographicCitationAlam, I. et al. (2020) Rapid evolution of plastic-degrading enzymes prevalent in the global ocean. bioRxiv, Published online September 9, 2020. https://doi.org/10.1101/2020.09.07.285692spa
dcterms.bibliographicCitationMaruthamuthu, M. et al. (2017) Characterization of a furan aldehyde￾tolerant β-xylosidase/α-arabinosidase obtained through a synthetic metagenomics approach. J. Appl. Microbiol. 123, 145–158spa
dcterms.bibliographicCitationCallahan, B.J. et al. (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583spa
dcterms.bibliographicCitationMartin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12spa
dcterms.bibliographicCitationKursa, M.B. and Rudnicki, W.R. (2010) Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13spa
dcterms.bibliographicCitationLove, M.I. et al. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550spa
dcterms.bibliographicCitationFriedman, J. and Alm, E.J. (2012) Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687spa
dcterms.bibliographicCitationBastian, M. et al. (2009) Gephi: an open source software for ex￾ploring and manipulating networks. Proc. Int. AAAI Conf. Weblogs. Soc. Media 3, 361–362spa
dcterms.bibliographicCitationDíaz-García, L. et al. (2021) Dilution-to-stimulation/extinction method: a combination enrichment strategy to develop a mini￾mal and versatile lignocellulolytic bacterial consortium. Appl. Environ. Microbiol. 87, e02427–20spa
dcterms.bibliographicCitationBolyen, E. et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857spa
dcterms.bibliographicCitationYilmaz, P. et al. (2014) The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648spa
dcterms.bibliographicCitationLessa Belone, M.C. et al. (2021) Degradation of common poly￾mers in sewage sludge purification process developed for microplastic analysis. Environ. Pollut. 269, 116235spa
dcterms.bibliographicCitationMenzel, P. et al. (2016) Fast and sensitive taxonomic classifica￾tion for metagenomics with Kaiju. Nat. Commun. 7, 11257spa
dcterms.bibliographicCitationLi, D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676spa
dcterms.bibliographicCitationAlneberg, J. et al. (2014) Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146spa
dcterms.bibliographicCitationKang, D.D. et al. (2019) MetaBAT 2: an adaptive binning algo￾rithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359spa
dcterms.bibliographicCitationWu, Y.-W. et al. (2016) MaxBin 2.0: an automated binning algo￾rithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607spa
dcterms.bibliographicCitationSieber, C.M.K. et al. (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843spa
dcterms.bibliographicCitationParks, D.H. et al. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055spa
dcterms.bibliographicCitationTanizawa, Y. et al. (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34, 1037–1039spa
dcterms.bibliographicCitationLangmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359spa
dcterms.bibliographicCitationDanecek, P. et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience 10, giab008spa
dcterms.bibliographicCitationChaumeil, P.-A. et al. (2022) GTDB-Tk v2: memory friendly clas￾sification with the genome taxonomy database. Bioinformatics 38, 5315–5316spa
dcterms.bibliographicCitationRodriguez-R, L.M. et al. (2018) The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288spa
dcterms.bibliographicCitationMeier-Kolthoff, J. and Göker, M. (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 2182spa
dcterms.bibliographicCitationMeier-Kolthoff, J. et al. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 14, 60spa
dcterms.bibliographicCitationNguyen, L.T. et al. (2015) IQ-TREE: a fast and effective stochas￾tic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274spa
dcterms.bibliographicCitationLetunic, I. and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296spa
dcterms.bibliographicCitationFu, L. et al. (2012) CD-HIT: accelerated for clustering the next￾generation sequencing data. Bioinformatics 28, 3150–3152spa
dcterms.bibliographicCitationBuchfink, B. et al. (2015) Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60spa
dcterms.bibliographicCitationAramaki, T. et al. (2020) KofamKOALA: KEGG Ortholog assign￾ment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252spa
dcterms.bibliographicCitationSulaiman, S. et al. (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf￾branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556–1562spa
dcterms.bibliographicCitationFurukawa, M. et al. (2019) Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 9, 16038spa
dcterms.bibliographicCitationZallot, R. et al. (2019) The EFI web resource for genomic enzy￾mology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182spa
dcterms.bibliographicCitationShannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504spa
dcterms.bibliographicCitationAnderson, M.J. and Walsh, D.C.I. (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574spa
dcterms.bibliographicCitationWickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer-Verlagspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0167779924002427-main.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: