A Novel Switched-Capacitor Enhanced-Boost Quasi Z-Source Network

dc.contributor.authorJagan, Vadthyaeng
dc.contributor.authorKumar, Suguru Praveeneng
dc.contributor.authorDeepika, Kolaeng
dc.contributor.authorSravya, Samaeng
dc.contributor.authorMallesh, Usirikapallyeng
dc.contributor.authorB. Nagi Reddyeng
dc.date.accessioned2023-12-29 13:09:03
dc.date.accessioned2025-05-21T19:15:47Z
dc.date.available2023-12-29 13:09:03
dc.date.issued2023-12-29
dc.description.abstractThis paper presents a novel switched-capacitor enhanced-boost quasi-Z-source inverter (SCEB-qZSI) for renewable energy applications. The described topology is a novel power electronic converter that uses switched-capacitors to increase the voltage boost. In the meanwhile, a reduced shoot-through condition results in a higher dc-link voltage. Moreover, the proposed concept has the advantages of continuous input current, smaller current ripple, common grounding, and high output voltage gain. The proposed topology is thoroughly examined, and simulation data are used to support the theoretical analysis. The proposed SCEB-qZSI topology has potential uses in electric vehicles, industrial applications, and renewable energy systems which may develop by using the inexpensive components making it an attractive option for applications that have limited funds. D represents the shoot-through duty ratio of the inverter switches which can range from 0<D<0.144. In the proposed topology inductor voltages, inductor currents, capacitor voltages, diode currents, and voltage source inverter outputs are extracted with and without filters and are discussed in brief. The theoretical and simulation evaluation for the above findings is presented in this paper.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol4.n2.528
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13518
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol4.n2.528
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/528/387
dc.relation.citationeditionNúm. 2 , Año 2023 : Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage12
dc.relation.citationissue2eng
dc.relation.citationstartpage1
dc.relation.citationvolume4eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesMiaosen Shen, Alan Joseph, Jin Wang, Fang Z. Peng, and Donald J. Adams. Comparison of traditional inverters and z-source inverter for fuel cell vehicles. IEEE Transactions on Power Electronics, 22(4):1453–1463, 2007. [2] Saurabh Kharjule. Voltage source inverter. In 2015 International Conference on Energy Systems and Applications, pages 537–542, 2015. [3] Fang Zheng Peng. Z-source inverter. IEEE Transactions on Industry Applications, 39(2):504–510, 2003. [4] F.Z. Peng. Z-source inverter for motor drives. In 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), volume 1, pages 249–254 Vol.1, 2004. [5] Minh-Khai Nguyen, Tuan-Vu Le, Sung-Jun Park, and Young-Cheol Lim. A class of quasi-switched boost inverters. IEEE Transactions on Industrial Electronics, 62(3):1526–1536, 2015. [6] Minh-Khai Nguyen, Young-Cheol Lim, and Geum-Bae Cho. Switched-inductor quasi-z-source inverter. IEEE Transactions on Power Electronics, 26(11):3183–3191, 2011. [7] P. K. Gayen and S. Das. An enhanced ultra-high gain active-switched quasi z-source inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3):1517–1521, 2022. [8] Vadthya Jagan and Udutha Prashanth. Voltage-lift-type z-source inverter. In Innovations in Electrical and Electronic Engineering, pages 397–410, Singapore, 2022. Springer Singapore. [9] Seyyed Majid Hosseini, Reza Ghazi, Ali Nikbahar, and Mohammad Eydi. A new enhanced-boost switched-capacitor quasi z-source network. IET Power Electronics, 14(2):412–421, 2021. [10] Vadthya Jagan, Bhavadish Chary Maheshwaram, Mallesh Usirikapally, Sankeerthana Mettu, Aishwarya Kusumba, and Nikhil Sriramoju. Voltage-lift type impedance-network improved-z-source inverter. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), pages 1–6, 2023. [11] Chandana Jayampathi Gajanayake, Fang Lin Luo, Hoay Beng Gooi, Ping Lam So, and Lip Kian Siow. Extended-boost z-source inverters. IEEE Transactions on Power Electronics, 25(10):2642–2652, 2010. [12] Hossein Fathi and Hossein Madadi. Enhanced-boost z-source inverters with switched z-impedance. IEEE Transactions on Industrial Electronics, 63(2):691–703, 2016. [13] Vadthya Jagan, Mithun Kumar Reddy Alpuri, Mandava Neeharika, Cheruku Swetha, Pedekala Mahendar, and Sharmili Das. A family of switched-impedance network enhanced-boost quasi-z-source inverters. International Journal of Power Electronics and Drive Systems, 13(1):309, 2022.eng
dc.rightsVadthya Jagan, Suguru Praveen Kumar, Kola Deepika, Sama Sravya, Usirikapally Mallesh, Nagi Reddy B - 2023eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/528eng
dc.subjectDC-DC Convertereng
dc.subjectvoltage source converterseng
dc.subjectBuck, Boost, DC-DC convertereng
dc.subjectquasi-Z-source invertereng
dc.subjectswitched capacitoreng
dc.titleA Novel Switched-Capacitor Enhanced-Boost Quasi Z-Source Networkspa
dc.title.translatedA Novel Switched-Capacitor Enhanced-Boost Quasi Z-Source Networkspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos