A predictive model for the missing people problem

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorDe la Hoz Domínguez, Enrique José
dc.contributor.authorMendoza-Brand, Silvana
dc.coverage.spatialColombia
dc.date.accessioned2022-01-27T14:51:33Z
dc.date.available2022-01-27T14:51:33Z
dc.date.issued2021-03-01
dc.date.submitted2022-01-26
dc.description.abstractThe disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, the police departments must develop a search task, in most cases with much uncertainty. In this research, a predictive model to predict missing people’s status is presented. The information used to create the model come from the Colombian legal Medicine Institute, in a public dataset composed of 6202 cases and 11 variables. The output variable was the final disappearance status, with the categories Appears Dead, Appears Alive, and Still Disappeared. Three supervised machine-learning algorithms were trained and tested for the model creation, K-Nearest Neighbours, Decision Trees, and Random Forest. The study was divided into three phases, first considering all the output categories. In the second phase, generating a binary classification for the Appeared and Not appeared instance. Thirdly, models were built to predict the status of appeared persons, Appears Alive or Appears Dead. The K-NN algorithm outperforms the other models with an Area under the curve value of 94.8%.spa
dc.format.extent7 Páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationE. D. Domínguez, S. M. Brand Rom J Leg Med29(1)74-80(2021) DOI:10.4323/rjlm.2021.74spa
dc.identifier.doi10.4323/rjlm.2021.74
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10413
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRom J Leg Med - vol. 29 n° 1 (2021)spa
dc.subject.armarcLEMB
dc.subject.keywordsMissing peoplespa
dc.subject.keywordsSupervised learningspa
dc.subject.keywordsKnowledge discoveryspa
dc.subject.keywordsPredictive modelingspa
dc.titleA predictive model for the missing people problemspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dcterms.bibliographicCitationBurch RA. Presumed Dead: Why Arizona Should Shorten the Required Time for Beloved Missing Persons to Be Declared Legally Dead. Ariz. Summit Law Rev. 2017; 10: 59.spa
dcterms.bibliographicCitationYang Y, Hu X, Liu H, Jiawei Z, Li Z, Yu P.S. r-instance Learning for Missing People Tweets Identification. 2018spa
dcterms.bibliographicCitationParr H, Stevenson O, Woolnough P. Search/ing for missing people: Families living with ambiguous absence. Emot. Space Soc. 2016; 19: 66-75.spa
dcterms.bibliographicCitationMannini A, Sabatini AM. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors. 2010; 10 (2).spa
dcterms.bibliographicCitationBerk RA, Sorenson SB, Barnes G. Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions. J. Empir. Leg. Stud. 2016; 13(1): 94-115.spa
dcterms.bibliographicCitationCutajar J, Formosa S, Calafato T. Community Perceptions of Criminality: The Case of the Maltese Walled City of Bormla. Soc. Sci. 2013; 2(2).spa
dcterms.bibliographicCitationBase de datos preliminar de personas reportadas como Desaparecidas Enero-Noviembre 2017 | Datos Abiertos Colombia». https://www.datos.gov.co/Estad-sticas-Nacionales/Base-de-datospreliminar- de-personas-reportadas-co/85g8-qemt (accedido oct. 07, 2020).spa
dcterms.bibliographicCitationBurrell J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data Soc. 2016; 3(1).spa
dcterms.bibliographicCitationKataria A, Singh MD. A Review of Data Classification Using K-Nearest Neighbour Algorithm. 2013.spa
dcterms.bibliographicCitationTherneau T, Atkinson B, Ripley B. Recursive Partitioning and Regression Trees. 2019.spa
dcterms.bibliographicCitationBreiman L. Random Forests. Mach. Learn. 2001; 45(1): 5-32.spa
dcterms.bibliographicCitationFranco RMF, Giraldo GCV. Identifying missing people in the National Database of Genetic Profiles for Application in Judicial Investigation —CODIS—: Two case reports. Case Rep. 2015; 1(2).spa
dcterms.bibliographicCitationPan L, Liu G, Lin F, Zhong S, Xia H, Sun X, Liang H. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia. Sci. Rep. 2017; 7(1).spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
74-80_oz De la Hoz Domingu.pdf
Size:
156.12 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Item-specific license agreed upon to submission
Description: