Reduction of losses and operating costs in distribution networks using a genetic algorithm and mathematical optimization

Loading...
Thumbnail Image

Date

2021-02-09

Authors

Riaño, Fabio Edison
Cruz, Jonathan Felipe
Montoya, Oscar Danilo
Chamorro, Harold R.
Alvarado-Barrios, Lázaro

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This study deals with the minimization of the operational and investment cost in the distribution and operation of the power flow considering the installation of fixed-step capacitor banks. This issue is represented by a nonlinear mixed-integer programming mathematical model which is solved by applying the Chu and Beasley genetic algorithm (CBGA). While this algorithm is a classical method for resolving this type of optimization problem, the solutions found using this approach are better than those reported in the literature using metaheuristic techniques and the General Algebraic Modeling System (GAMS). In addition, the time required for the CBGA to get results was reduced to a few seconds to make it a more robust, efficient, and capable tool for distribution system analysis. Finally, the computational sources used in this study were developed in the MATLAB programming environment by implementing test feeders composed of 10, 33, and 69 nodes with radial and meshed configurations.

Description

Keywords

Citation

Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419. https://doi.org/10.3390/electronics10040419
electronics-10-00419.pdf