Fractional Fourier analysis of random signals and the notion of α -Stationarity of the Wigner-Ville distribution
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.creator | Torres R. | |
dc.creator | Torres E. | |
dc.date.accessioned | 2020-03-26T16:32:54Z | |
dc.date.available | 2020-03-26T16:32:54Z | |
dc.date.issued | 2013 | |
dc.description.abstract | In this paper, a generalized notion of wide-sense α-stationarity for random signals is presented. The notion of stationarity is fundamental in the Fourier analysis of random signals. For this purpose, a definition of the fractional correlation between two random variables is introduced. It is shown that for wide-sense α-stationary random signals, the fractional correlation and the fractional power spectral density functions form a fractional Fourier transform pair. Thus, the concept of α-stationarity plays an important role in the analysis of random signals through the fractional Fourier transform for signals nonstationary in the standard formulation, but α-stationary. Furthermore, we define the α-Wigner-Ville distribution in terms of the fractional correlation function, in which the standard Fourier analysis is the particular case for α=pi2, and it leads to the Wiener-Khinchin theorem. © 1991-2012 IEEE. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | IEEE Transactions on Signal Processing; Vol. 61, Núm. 6; pp. 1555-1560 | |
dc.identifier.doi | 10.1109/TSP.2012.2236834 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.issn | 1053587X | |
dc.identifier.orcid | 56270896900 | |
dc.identifier.orcid | 35094573000 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9077 | |
dc.language.iso | eng | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875015943&doi=10.1109%2fTSP.2012.2236834&partnerID=40&md5=8948c99af3dc2f6f9bcba86bcaee6a4d | |
dc.subject.keywords | Fractional correlation | |
dc.subject.keywords | Fractional Fourier transformation | |
dc.subject.keywords | Fractional power spectral density | |
dc.subject.keywords | Random signals | |
dc.subject.keywords | Wiener-Khinchin theorem | |
dc.subject.keywords | Wigner-Ville distribution | |
dc.subject.keywords | Fractional correlation | |
dc.subject.keywords | Fractional Fourier Transformations | |
dc.subject.keywords | Fractional power spectral density | |
dc.subject.keywords | Random signal | |
dc.subject.keywords | Wiener-Khinchin theorem | |
dc.subject.keywords | Fourier optics | |
dc.subject.keywords | Power spectral density | |
dc.subject.keywords | Wigner-Ville distribution | |
dc.subject.keywords | Fourier analysis | |
dc.title | Fractional Fourier analysis of random signals and the notion of α -Stationarity of the Wigner-Ville distribution | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | |
dcterms.bibliographicCitation | Namias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265 | |
dcterms.bibliographicCitation | Pellat-Finet, P., (2009) Optique de Fourier: Théorie Métaxiale et Fractionnaire, , Paris France: Springer Verlag | |
dcterms.bibliographicCitation | Lohmann, A.W., Image rotation, Wigner rotation, and the fractional Fourier transform (1993) J. Opt. Soc. Amer. A, 10, pp. 2181-2186. , Oct | |
dcterms.bibliographicCitation | Ozaktas, H.M., Mendlovic, D., Fractional Fourier optics (1995) J. Opt. Soc. Amer. A, 12, pp. 743-751. , Apr | |
dcterms.bibliographicCitation | Ozaktas, H.M., Zalevsky, Z., Kutay, M.A., (2001) The Fractional Fourier Transform with Applications in Optics and Signal Processing, , Chichester, U.K.: Wiley | |
dcterms.bibliographicCitation | Bultheel, A., Martinez, H., Sulbaran, Recent developments in the theory of the fractional Fourier transforms and linear canonical transforms (2007) Bull. Belgian Math. Soc. Simon Stevin, 13, pp. 971-1005 | |
dcterms.bibliographicCitation | Mendlovic, D., Ozaktas, H.M., Lohmann, A.W., Fractional correlation (1995) Appl. Opt., 34, pp. 303-309. , Jan | |
dcterms.bibliographicCitation | Almeida, L.B., Product and convolution theorems for the fractional Fourier transform (1997) IEEE Signal Process. Lett., 4, pp. 15-17 | |
dcterms.bibliographicCitation | Zayed, A.I., A convolution and product theorem for the fractional Fourier transform (1998) IEEE Signal Process. Lett., 5, pp. 101-103. , Apr | |
dcterms.bibliographicCitation | Akay, G.O., Boudreaux-Bartels, F., Fractional convolution and correlation via operator methods and an application to detection of linear FM signals (2001) IEEE Trans. Signal Process., 49, pp. 979-993. , May | |
dcterms.bibliographicCitation | Torres, R., Pellat-Finet, P., Torres, Y., Fractional convolution, fractional correlation and their translation invariance properties (2010) Signal Process., 90, pp. 1976-1984. , Jun | |
dcterms.bibliographicCitation | Almeida, L.B., The fractional Fourier transform and time-frequency representations (1994) IEEE Trans. Signal Process., 42, pp. 3084-3091. , Nov | |
dcterms.bibliographicCitation | Pei, S., Ding, J., Relations between fractional operations and timefrequency distributions, and their applications (2001) IEEE Trans. Signal Process., 49, pp. 1638-1655. , Aug | |
dcterms.bibliographicCitation | Alieva, T., Bastiaans, M.J., Stankovic, L., Signal reconstruction from two close fractional Fourier power spectra (2003) IEEE Trans. Signal Process., 51, pp. 112-123. , Jan | |
dcterms.bibliographicCitation | Xia, X.-G., On bandlimited signals with fractional Fourier transform (1996) IEEE Signal Process. Lett., 3, pp. 72-74 | |
dcterms.bibliographicCitation | Candan, C., Ozaktas, H.M., Sampling and series expansion theorems for fractional Fourier and other transforms (2003) Signal Process., 83, pp. 2455-2457 | |
dcterms.bibliographicCitation | Torres, R., Pellat-Finet, P., Torres, Y., Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography (2006) IEEE Signal Process. Lett., 13 (11), pp. 676-679. , Nov | |
dcterms.bibliographicCitation | Mustard, D., The fractional Fourier transform and the Wigner distribution (1996) J. Aust. Math. Soc. Ser. B, 38, pp. 209-219 | |
dcterms.bibliographicCitation | Almeida, L.B., The fractional Fourier transform and time-frequency representations (1994) IEEE Trans. Signal Process., 42 (11), pp. 3084-3091 | |
dcterms.bibliographicCitation | Lohmann, A.W., Mendlovic, D., Zalevsky, Z., (1998) IV: Fractional Transformations in Optics Ser. Progress in Optics, 38, pp. 263-342. , E.Wolf, Ed. Amsterdam, The Netherlands: Elsevier | |
dcterms.bibliographicCitation | Dorsch, R.G., Lohmann, A.W., Bitran, Y., Mendlovic, D., Ozaktas, H.M., Chirp filtering in the fractional Fourier domain (1994) Appl. Opt., 33 (32), pp. 7599-7602. , Nov | |
dcterms.bibliographicCitation | Ozaktas, H.M., Barshan, B., Mendlovic, D., Onural, L., Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms (1994) J. Opt. Soc. Amer. A, 11 (2), pp. 547-559. , Feb | |
dcterms.bibliographicCitation | Tao, R., Zhang, F., Wang, Y., Fractional power spectrum (2008) IEEE Trans. Signal Process., 56, pp. 4199-4206. , Sep | |
dcterms.bibliographicCitation | Pei, S.-C., Ding, J.-J., Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes (2010) Trans. Signal Process., 58 (8), pp. 4079-4092. , Aug | |
dcterms.bibliographicCitation | Martin, W., Time-frequency analysis of random signals (1982) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 7, pp. 1325-1328. , May | |
dcterms.bibliographicCitation | Wigner, E., On the quantum correction for thermodynamic equilibrium (1932) Phys. Rev., 40, pp. 749-959. , Jun | |
dcterms.bibliographicCitation | Ville, J., Théorie et application de la notion de signal analytique (French) (1948) Cables et Transmission, 1 (1), pp. 61-74 | |
dcterms.bibliographicCitation | The wigner-ville spectrum of nonstationary random signals (1997) The Wigner Distribution-Theory and Applications in Signal Processing, , Amsterdam, The Netherlands: Elsevier | |
dcterms.bibliographicCitation | McBride, A.C., Kerr, F.H., On Namias's fractional Fourier transforms (1987) IMA J. Appl. Math., 39 (2), pp. 159-175 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |