A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorMontoya O.D.
dc.creatorGil-González, Walter
dc.creatorGarcés, Alejandro
dc.date.accessioned2020-03-26T16:33:03Z
dc.date.available2020-03-26T16:33:03Z
dc.date.issued2019
dc.description.abstractThis paper addresses the economic-environmental dispatch problem for thermal plants on a Multi-terminal HVDC power grid. A multi-objective optimization approach is used for modeling the compromise between fuel costs and the greenhouse gas emissions by the thermal plants. The grid topology is also considered by proposing a convex reformulation of the power balance equations through Taylor's series expansion method. To eliminate the error introduced by this linear approximation a sequential quadratic programming approach is applied by solving the multi-objective problem by a single-objective equivalent via weighting factor approach. A standard 6-node HVDC system is used to validate the proposed convex formulation. All simulations are performed in MATLAB with the quadprog optimization package. © 2019 IEEE.eng
dc.description.notesThis work was partially supported by the program in electric power systems engineering at Universidad Tecnologica de Pereira.
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
dc.identifier.doi10.1109/PEPQA.2019.8851570
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781728116266
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9146
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate30 May 2019 through 31 May 2019
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073427188&doi=10.1109%2fPEPQA.2019.8851570&partnerID=40&md5=76774da080dbc292ef3f2095cfe1786b
dc.source.event4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019
dc.subject.keywordsDirect-current grids
dc.subject.keywordseconomic-environmental dispatch problem
dc.subject.keywordsmulti-objective optimization
dc.subject.keywordssequential quadratic programming
dc.subject.keywordsweighting factor method
dc.subject.keywordsElectric power system economics
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsGas emissions
dc.subject.keywordsGas plants
dc.subject.keywordsGreenhouse gases
dc.subject.keywordsHVDC power transmission
dc.subject.keywordsMATLAB
dc.subject.keywordsMultiobjective optimization
dc.subject.keywordsPower electronics
dc.subject.keywordsPower quality
dc.subject.keywordsQuadratic programming
dc.subject.keywordsDirect current
dc.subject.keywordsEconomic environmental dispatches
dc.subject.keywordsMulti-objective problem
dc.subject.keywordsOptimization packages
dc.subject.keywordsPower balance equations
dc.subject.keywordsSequential quadratic programming
dc.subject.keywordsTaylor's series expansion
dc.subject.keywordsWeighting factors
dc.subject.keywordsElectric load dispatching
dc.titleA Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), pp. 1084-1090. , June
dcterms.bibliographicCitationWu, L., Wang, Y., Yuan, X., Zhou, S., Environmental/economic power dispatch problem using multi-objective differential evolution algorithm (2010) Electr. Power Syst. Res., 80 (9), pp. 1171-1181
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , May
dcterms.bibliographicCitationOrtega, A., Milano, F., Stochastic transient stability analysis of transmission systems with inclusion of energy storage devices (2018) IEEE Trans. Power Syst., 33 (1), pp. 1077-1079. , Jan
dcterms.bibliographicCitationZhang, Y., Zhu, S., Chowdhury, A.A., Reliability modeling and control schemes of composite energy storage and wind generation system with adequate transmission upgrades (2011) IEEE Trans. Sustain. Energy, 2 (4), pp. 520-526. , Oct
dcterms.bibliographicCitationHozouri, M.A., Abbaspour, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., On the use of pumped storage for wind energy maximization in transmission-constrained power systems (2015) IEEE Trans. Power Syst., 30 (2), pp. 1017-1025. , March
dcterms.bibliographicCitationKanellos, F.D., Grigoroudis, E., Hope, C., Kouikoglou, V.S., Phillis, Y.A., Optimal ghg emission abatement and aggregate economic damages of global warming (2017) IEEE Syst. J., 11 (4), pp. 2784-2793. , Dec
dcterms.bibliographicCitationKainuma, M., Matsuoka, Y., Morita, T., Hibino, G., Development of an end-use model for analyzing policy options to reduce greenhouse gas emissions (1999) IEEE Trans Syst Man Cybern C Appl Rev, 29 (3), pp. 317-324. , Aug
dcterms.bibliographicCitationPark, H., Baldick, R., Stochastic generation capacity expansion planning reducing greenhouse gas emissions (2015) IEEE Trans. Power Syst., 30 (2), pp. 1026-1034. , March
dcterms.bibliographicCitationBora, T.C., Mariani, V.C., Dos Santos Coelho, L., Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm (2019) Appl. Therm. Eng., 146, pp. 688-700
dcterms.bibliographicCitationQu, B., Zhu, Y., Jiao, Y., Wu, M., Suganthan, P., Liang, J., A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems (2018) Swarm Evol. Comput., 38, pp. 1-11
dcterms.bibliographicCitationBhattachaijee, K., Bhattacharya, A., Nee Dey, S.H., Backtracking search optimization based economic environmental power dispatch problems (2015) Int. J. Electr. Power Energy Syst., 73, pp. 830-842
dcterms.bibliographicCitationAlawode, K., Jubril, A., Kehinde, L., Ogunbona, P., Semidefinite programming solution of economic dispatch problem with non-smooth, non-convex cost functions (2018) Electr. Power Syst. Res., 164, pp. 178-187
dcterms.bibliographicCitationManoharan, P.S., Kannan, P.S., Baskar, S., Iruthayarajan, M.W., Penalty parameter-less constraint handling scheme based evolutionary algorithm solutions to economic dispatch (2008) IET Gener Transrn Dis, 2 (4), pp. 478-490. , July
dcterms.bibliographicCitationYasar, C., Ozyon, S., Solution to scalarized environmental economic power dispatch problem by using genetic algorithm (2012) Int. J. Electr. Power Energy Syst., 38 (1), pp. 54-62
dcterms.bibliographicCitationZou, D., Li, S., Kong, X., Ouyang, H., Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy (2019) Appl. Energy, 237, pp. 646-670
dcterms.bibliographicCitationGherbi, Y.A., Bouzeboudja, H., Gherbi, F.Z., The combined economic environmental dispatch using new hybrid metaheuristic (2016) Energy, 115, pp. 468-477
dcterms.bibliographicCitationKheshti, M., Ding, L., Ma, S., Zhao, B., Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems (2018) Renewable Energy, 125, pp. 1021-1037
dcterms.bibliographicCitationAbdelaziz, A., Ali, E., Elazim, S.A., Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems (2016) Energy, 101, pp. 506-518
dcterms.bibliographicCitationMahdi, F.P., Vasant, P., Kallimani, V., Watada, J., Fai, P.Y.S., Abdullah-Al-Wadud, M., A holistic review on optimization strategies for combined economic emission dispatch problem (2018) Renewable Sustainable Energy Rev., 81, pp. 3006-3020
dcterms.bibliographicCitationWei, W., Wang, J., Mei, S., Convexification of the nash bargaining based environmental-economic dispatch (2016) IEEE Trans. Power Syst., 31 (6), pp. 5208-5209. , Nov
dcterms.bibliographicCitationChen, F., Huang, G., Fan, Y., Liao, R., A nonlinear fractional programming approach for environmentaleconomic power dispatch (2016) Int. J. Electr. Power Energy Syst., 78, pp. 463-469
dcterms.bibliographicCitationDos Santos, M.R.B., Balbo, A.R., Goncalves, E., Soler, E.M., Pinheiro, R.B.N.M., Nepomuceno, L., Baptista, E.C., A proposed methodology involving progressive bounded constraints and interior-exterior methods in smoothed economic/environmental dispatch problems (2017) IEEE Latin America Transactions, 15 (8), pp. 1422-1431
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Garces, A., Sequential quadratic programming models for solving the opf problem in dc grids (2019) Electr. Power Syst. Res., 169, pp. 18-23
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , Sep
dcterms.bibliographicCitationGil-Gonzalez, W., Montoya, O.D., Holguin, E., Garces, A., Na, L.F.G., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in dc-mgs with cpls via an sdp model (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzlez, W., Garces, A., Optimal power flow on dc microgrids: A quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationMontoya, O.D., Na, L.G.-N., Gonzalez-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage dc power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Na, L.G.-N., Power flow analysis in dc grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationGavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal vsc-hvdc grids (2015) Electr. Power Syst. Res., 122, pp. 33-41
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files