Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorMontoya O.D.
dc.creatorGarrido Arévalo, Víctor Manuel
dc.creatorGrisales-Noreña L.F.
dc.creatorGonzález-Montoya D.
dc.creatorRamos-Paja C.A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.issued2018
dc.description.abstractThis paper presents a metaheuristic optimization technique named back hole optimization (BHO) for solving the problem of optimal dimensioning of distributed generation in radial distribution networks. This problem is formulated as a conventional optimal power flow problem in ac power grids. A master-slave methodology is proposed to solve this optimization problem. In the master stage the BHO technique decides the power output of each distributed generator (DG), while slave stage is responsible for solving the resulting power flow problem via classical sweep backward/forward technique. As comparison methods, classical particle swarm optimization as well as interior point methods are used. Two classical test systems with radial topologiesy and 33 and 69 nodes are used for numerical validations by using the MATLAB programming environment. Simulation results show the quality of the proposed optimization technique for power losses reduction in comparison with large-scale used optimization approaches available in specialized literature. © 2018 IEEE.eng
dc.description.notesFINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, the PhD program in Engineering of la Universidad Tecnológica de Pereira, and the Univer-sidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211.
dc.description.sponsorshipUniversidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI UNAL-ITM-39823/P17211 Universidad Tecnológica de Pereira, UTP
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.doi10.1109/EPIM.2018.8756354
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781538678428
dc.identifier.orcid56919564100
dc.identifier.orcid57210170020
dc.identifier.orcid55791991200
dc.identifier.orcid57205565936
dc.identifier.orcid22836502400
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8858
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate14 November 2018 through 16 November 2018
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069788404&doi=10.1109%2fEPIM.2018.8756354&partnerID=40&md5=7a6f28d2ce047f5214b68e1d84f5372e
dc.source.event9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.subject.keywordsBlack-hole optimization
dc.subject.keywordsComplex domain formulation
dc.subject.keywordsDistributed generation
dc.subject.keywordsOptimal power flow
dc.subject.keywordsAcoustic generators
dc.subject.keywordsDistributed power generation
dc.subject.keywordsElectric load flow
dc.subject.keywordsGravitation
dc.subject.keywordsMATLAB
dc.subject.keywordsParticle swarm optimization (PSO)
dc.subject.keywordsStars
dc.subject.keywordsBlack holes
dc.subject.keywordsComplex domains
dc.subject.keywordsDistributed generators
dc.subject.keywordsMeta-heuristic optimization techniques
dc.subject.keywordsOptimal power flow problem
dc.subject.keywordsOptimal power flows
dc.subject.keywordsOptimization techniques
dc.subject.keywordsRadial distribution networks
dc.subject.keywordsElectric power transmission networks
dc.titleOptimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15 (5), pp. 890-900. , May
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Lat. Am. Trans., 15 (6), pp. 1084-1090. , June
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27. , feb
dcterms.bibliographicCitationGrisales, L.F., Montoya, O.D., Grajales, A., Hincapie, R.A., Granada, M., Optimal planning and operation of distribution systems considering distributed energy resources and automatic reclosers (2018) IEEE Lat. Am. Trans., 16 (1), pp. 126-134. , Jan
dcterms.bibliographicCitationBouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888
dcterms.bibliographicCitationMontoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruiz, A., Optimal Power Flow for radial and mesh grids using semidefinite programming (2017) Tecnologicas, 20 (40). , dec
dcterms.bibliographicCitationGarces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229
dcterms.bibliographicCitationBaradar, M., Hesamzadeh, M.R., Ac power flow representation in conic format (2015) IEEE Trans. Power Syst., 30 (1), pp. 546-547. , Jan
dcterms.bibliographicCitationBakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V., Optimal power flow by enhanced genetic algorithm (2002) IEEE Trans. Power Syst., 17 (2), pp. 229-236. , May
dcterms.bibliographicCitationYan, W., Liu, F., Chung, C.Y., Wong, K.P., A hybrid genetic algorithm-interior point method for optimal reactive power flow (2006) IEEE Trans. Power Syst., 21 (3), pp. 1163-1169. , Aug
dcterms.bibliographicCitationVlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y., Ant colony system-based algorithm for constrained load flow problem (2005) IEEE Trans. Power Syst., 20 (3), pp. 1241-1249. , Aug
dcterms.bibliographicCitationLuo, J., Shi, L., Ni, Y., A solution of optimal power flow incorporating wind generation and power grid uncertainties (2018) IEEE Access, 6, pp. 19681-19690
dcterms.bibliographicCitationEsmin, A.A.A., Lambert-Torres, G., De Souza, A.C.Z., A hybrid particle swarm optimization applied to loss power minimization (2005) IEEE Trans. Power Syst., 20 (2), pp. 859-866. , May
dcterms.bibliographicCitationOnate-Yumbla, P.E., Ramirez, J.M., Coello-Coello, C.A., Optimal Power Flow Subject to Security Constraints Solved with a Particle Swarm Optimizer (2008) IEEE Trans. Power Syst., 23 (1), pp. 33-40. , Feb
dcterms.bibliographicCitationAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel sine-cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343
dcterms.bibliographicCitationAlgabalawy, M.A., Abdelaziz, A.Y., Mekhamer, S.F., Aleem, S.H.A., Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms (2018) J. Electr. Syst. Inf. Technol.
dcterms.bibliographicCitationLenin, K., Reddy, B.R., Suryakalavathi, M., Hybrid Tabu searchsimulated annealing method to solve optimal reactive power problem (2016) Int. J. Electr. Power Energy Syst., 82, pp. 87-91
dcterms.bibliographicCitationRoa-Sepulveda, C., Pavez-Lazo, B., A solution to the optimal power flow using simulated annealing (2003) Int. J. Electr. Power Energy Syst., 25 (1), pp. 47-57
dcterms.bibliographicCitationChang, G.W., Chu, S.Y., Wang, H.L., An improved backward/-forward sweep load flow algorithm for radial distribution systems (2007) IEEE Transactions on Power Systems, 22 (2), pp. 882-884. , May
dcterms.bibliographicCitationPiotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M., How novel is the novel black hole optimization approach? (2014) Information Sciences, 267, pp. 191-200
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) International Journal of Electrical Power & Energy Systems, 63, pp. 609-617
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files