Detection of broken bars in three-phase motors by using curve fits and classification algorithms
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Hoyos, Gabriel | |
dc.contributor.author | Puertas, Edwin | |
dc.contributor.author | Villa, Jose Luis | |
dc.contributor.author | Martinez-Santos, Juan Carlos | |
dc.date.accessioned | 2023-07-19T21:15:01Z | |
dc.date.available | 2023-07-19T21:15:01Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.description.abstract | Since they transform electrical energy into mechanical energy, three-phase induction motors are one of the main assets that companies have. Therefore, good monitoring of their conditions and diagnosing their faults is essential. In this article, we propose a curve fitting technique and classification algorithms for a current motor phase to detect broken bars inside the motor. The data set is in the IEEE database, where the data was acquired, simulating the conditions of healthy and broken bars by varying the load condition. The curve fitting technique gives me essential attributes such as the signal's amplitude, frequency, and phase shift, supported by the Fourier transform, which informs how the signal power is a function of frequency. Furthermore, we extracted attributes to train the classifiers, achieving 85% accuracy in classifying the number of broken bars within the engine. © 2022 IEEE. | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Hoyos, G., Puertas, E., Villa, J. L., & Martinez-Santos, J. C. (2022, November). Detection of broken bars in three-phase motors by using curve fits and classification algorithms. In 2022 IEEE ANDESCON (pp. 1-6). IEEE. | spa |
dc.identifier.doi | 10.1109/ANDESCON56260.2022.9989583 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12176 | |
dc.language.iso | eng | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022 | spa |
dc.subject.armarc | LEMB | |
dc.subject.keywords | Induction Motors; | spa |
dc.subject.keywords | Fault Detection; | spa |
dc.subject.keywords | Stators | spa |
dc.title | Detection of broken bars in three-phase motors by using curve fits and classification algorithms | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dcterms.bibliographicCitation | Chicco, D., Tötsch, N., Jurman, G. The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation (2021) BioData Mining, 14, art. no. 13, pp. 1-22. Cited 245 times. http://www.biodatamining.org/ doi: 10.1186/s13040-021-00244-z | spa |
dcterms.bibliographicCitation | Martínez, D.G. Mantenimiento Prescriptivo a Partir de la Predicción de Eventos Anómalos | spa |
dcterms.bibliographicCitation | Grandhi, R.T., Prakash, N.K. Machine-Learning Based Fault Diagnosis of Electrical Motors Using Acoustic Signals (2021) Data Intelligence and Cognitive Informatics., pp. 663-671. Cited 6 times. Springer | spa |
dcterms.bibliographicCitation | Gundewar, S., Kane, P., Andhare, A. Detection of broken rotor bar fault in an induction motor using convolution neural network (2022) Journal of Advanced Mechanical Design, Systems and Manufacturing, 16 (2), art. no. A2. Cited 3 times. https://www.jstage.jst.go.jp/article/jamdsm/16/2/16_2022jamdsm0020/_article/-char/en doi: 10.1299/jamdsm.2022jamdsm0020 | spa |
dcterms.bibliographicCitation | Halder, S., Bhat, S., Dora, B.K. Inverse thresholding to spectrogram for the detection of broken rotor bar in induction motor (2022) Measurement: Journal of the International Measurement Confederation, 198, art. no. 111400. Cited 5 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2022.111400 | spa |
dcterms.bibliographicCitation | Kennedy, S. (2017) RxM: What Is Prescriptive Maintenance, and How Soon Will You Need It?. Cited 3 times. | spa |
dcterms.bibliographicCitation | Lee, C.-Y., Zhuo, G.-L. Effective rotor fault diagnosis model using multilayer signal analysis and hybrid genetic binary chicken swarm optimization (2021) Symmetry, 13 (3), art. no. 487. Cited 6 times. https://www.mdpi.com/2073-8994/13/3/487/pdf doi: 10.3390/sym13030487 | spa |
dcterms.bibliographicCitation | Liu, X., Yan, Y., Hu, K., Zhang, S., Li, H., Zhang, Z., Shi, T. Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition (2022) Energies, 15 (3), art. no. 1196. Cited 9 times. https://www.mdpi.com/1996-1073/15/3/1196/pdf doi: 10.3390/en15031196 | spa |
dcterms.bibliographicCitation | Maciejewski, N.A.R. Deteccão e Diagn Óstico de Defeitos No Regime Transitório de Motores de Inducão Baseado em Sistemas Inteligentes PhD thesis. Universidade de São Paulo | spa |
dcterms.bibliographicCitation | Moreno-Sandoval, L.G. Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles (2020) CLEF (Working Notes).. Cited 3 times. | spa |
dcterms.bibliographicCitation | Puertas, E., Martinez-Santos, J.C. (2021) Phonetic Detection for Hate Speech Spreaders on Twitter. Cited 3 times. | spa |
dcterms.bibliographicCitation | Puertas, E., Moreno-Sandoval, L.G., Redondo, J., Alvarado-Valencia, J.A., Pomares-Quimbaya, A. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities (Open Access) (2021) Cognitive Computation, 13 (2), pp. 518-537. Cited 4 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-021-09818-9 | spa |
dcterms.bibliographicCitation | Rácz, A., Bajusz, D., Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics (Open Access) (2019) Molecules (Basel, Switzerland), 24 (15). Cited 45 times. doi: 10.3390/molecules24152811 | spa |
dcterms.bibliographicCitation | Refaeilzadeh, P., Tang, L., Liu, H. Crossvalidation (2009) Encyclopedia of Database Systems, 5, pp. 532-538. Cited 1602 times. | spa |
dcterms.bibliographicCitation | Treml, A.E. Experimental database for detecting and diagnosing rotor broken bar in a threephase induction motor (2020) IEEE DataPort. Cited 11 times. | spa |
dcterms.bibliographicCitation | Yepez, E.C. (2021) Detección de Barras Rotas en Motores de Inducción Utilizando Análisis de Entropía de la Información en Señales de Corriente | spa |
dcterms.bibliographicCitation | Yin, M., Vaughan, J.W., Wallach, H. Understanding the effect of accuracy on trust in machine learning models (2019) Conference on Human Factors in Computing Systems - Proceedings. Cited 183 times. ISBN: 978-145035970-2 doi: 10.1145/3290605.3300509 | spa |
dcterms.bibliographicCitation | Zhang, P., Du, Y., Habetler, T.G., Lu, B. A survey of condition monitoring and protection methods for medium-voltage induction motors (2011) IEEE Transactions on Industry Applications, 47 (1), art. no. 5620974, pp. 34-46. Cited 550 times. doi: 10.1109/TIA.2010.2090839 | spa |
dcterms.bibliographicCitation | Zhang, X., Zhang, T., Young, A.A., Li, X. Applications and comparisons of four time series models in epidemiological surveillance data (Open Access) (2014) PLoS ONE, 9 (2), art. no. e88075. Cited 106 times. http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0088075&representation=PDF doi: 10.1371/journal.pone.0088075 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Scopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdf
- Size:
- 174.67 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.11 KB
- Format:
- Item-specific license agreed upon to submission
- Description: