Herramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrange

dc.contributor.authorAnzola, Diegoeng
dc.contributor.authorCastro, Julioeng
dc.contributor.authorGiral-Ramírez, Diego Armandoeng
dc.date.accessioned2021-07-30 00:00:00
dc.date.accessioned2025-05-21T19:15:43Z
dc.date.available2021-07-30 00:00:00
dc.date.issued2021-07-30
dc.description.abstractEl análisis del flujo óptimo es un problema complejo y desafiante por sus características no lineales. La inclusión de restricciones de potencia y los modelos de las líneas de transmisión hacen complejo determinar el respectivo despacho. Los multiplicadores de Lagrange son un método de optimización clásico que permite solucionar problemas de despacho económico de múltiples variables sujetas con diversas restricciones. Este articulo presenta el desarrollo de una herramienta de simulación denominada SOPF (Software Optimal Power Flow), desarrollada en Guide-Matlab y que permite analizar el problema de flujo óptimo clásico de un sistema de potencia con pérdidas y con restricciones de potencia activa, el simulador desarrollado es un herramienta académica de apoyo para los estudiantes, profesores y personas interesadas en la aplicación de algoritmos de optimización para la operación económica de sistemas eléctricos de potencia. Como métricas, el simulador determina el despacho de la potencia activa de cada generador, los costos de generación de la potencia despachada, el aporte de cada máquina, los costos incrementales y las pérdidas de acuerdo al balance de potencia. Finalmente, los resultados se presentan a través de dos casos de estudio: flujo óptimo clásico con pérdidas y sin restricciones de potencia activa y flujo óptimo clásico con pérdidas y con restricciones de potencia activa. Para ambos casos, se obtienen errores inferiores al 1 %.spa
dc.description.abstractEl análisis del flujo óptimo es un problema complejo y desafiante por sus características no lineales. La inclusión de restricciones de potencia y los modelos de las líneas de transmisión hacen complejo determinar el respectivo despacho. Los multiplicadores de Lagrange son un método de optimización clásico que permite solucionar problemas de despacho económico de múltiples variables sujetas con diversas restricciones. Este articulo presenta el desarrollo de una herramienta de simulación denominada SOPF (Software Optimal Power Flow), desarrollada en Guide-Matlab y que permite analizar el problema de flujo óptimo clásico de un sistema de potencia con pérdidas y con restricciones de potencia activa, el simulador desarrollado es un herramienta académica de apoyo para los estudiantes, profesores y personas interesadas en la aplicación de algoritmos de optimización para la operación económica de sistemas eléctricos de potencia. Como métricas, el simulador determina el despacho de la potencia activa de cada generador, los costos de generación de la potencia despachada, el aporte de cada máquina, los costos incrementales y las pérdidas de acuerdo al balance de potencia. Finalmente, los resultados se presentan a través de dos casos de estudio: flujo óptimo clásico con pérdidas y sin restricciones de potencia activa y flujo óptimo clásico con pérdidas y con restricciones de potencia activa. Para ambos casos, se obtienen errores inferiores al 1 %.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol2.n1.1
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13491
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol2.n1.1
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/428/353
dc.relation.citationeditionNúm. 1 , Año 2021 : Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage16
dc.relation.citationissue1eng
dc.relation.citationstartpage1
dc.relation.citationvolume2eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesAlvarez-Bustos, A., Kazemtabrizi, B., Shahbazi, M., and Acha-Daza, E. (2021). Universal branch model for the solution of optimal power flows in hybrid AC/DC grids. International Journal of Electrical Power & Energy Systems, 126:106543. doi:https://doi.org/10.1016/j.ijepes.2020.106543.eng
dc.relation.referencesBukhsh, W., Edmunds, C., and Bell, K. (2020). OATS: Optimisation and Analysis Toolbox for Power Systems. IEEE Transactions on Power Systems, 35(5):3552–3561. doi:10.1109/TPWRS.2020.2986081.eng
dc.relation.referencesCastro Rico, J. E., Anzola Bustos, D. A., and Giral, D. (2019). Software en Matlab para el flujo óptimo clásico parael despacho hidrotérmico. PhD thesis, Universidad Distrital Francisco José de Caldas.eng
dc.relation.referencesChaudhary, R., Sethi, S., Keshari, R., and Goel, S. (2012). A study of comparison of Network Simulator -3 and Network Simulator -2. International Journal of Computer Science and Information Technologies.eng
dc.relation.referencesChen, H., Ngan, H., and Zhang, Y. (2016). Power system optimization: large-scale complex systems approaches. John Wiley & Sons.eng
dc.relation.referencesCuffe, P. (2020). Optimization and Visualization Tools for Situational Awareness in Highly Renewable Power Systems. In 2020 6th IEEE International Energy Conference (ENERGYCon), pages 930–933. doi:10.1109/ENERGYCon48941.2020.9236524.eng
dc.relation.referencesDas, J. C. (2017). Load flow optimization and optimal power flow. Crc Press.eng
dc.relation.referencesGrisales-Noreña, L.F., Garzón-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., and Rodriguez-Cabal,M.A. (2020). Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks. Transactions on Energy Systems and Engineering Applications, 1(1):13–31. doi:10.32397/tesea.vol1.n1.2.eng
dc.relation.referencesHasan, F., Kargarian, A., and Mohammadi, A. (2020). A survey on applications of machine learning for optimal power flow. In 2020 IEEE Texas Power and Energy Conference, TPEC 2020. doi:10.1109/TPEC48276.2020.9042547.eng
dc.relation.referencesIlyas, A. M., Suyuti, A., Gunadin, I. C., and Siswanto, A. (2020). Optimal Power Flow the Sulselrabar 150 KV system before and after the penetration of wind power plants considering power loss and generation costs. IOP Conference Series: Materials Science and Engineering, 850:12030. doi:10.1088/1757-899x/850/1/012030.eng
dc.relation.referencesMa, X. and Elia, N. (2019). Optimization Dynamics: A Bus-Level Distributed Approach for Optimal Power Flows. IEEE Transactions on Control of Network Systems, 6(2):642–652. doi:10.1109/TCNS.2018.2864140.eng
dc.relation.referencesMontoya, O. D. (2017). Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation. Ingeniería y Ciencia, 13(26):39–63. doi:10.17230/ingciencia.13.26.2.eng
dc.relation.referencesPinheiro, R. B. N. M., Nepomuceno, L., and Balbo, A. R. (2020). Solving large-scale reactive optimal power flow problems by a primal–dual M2BF approach. Optimization and Engineering, 21(2):485–515. doi:10.1007/s11081-019-09451-4.eng
dc.relation.referencesThurner, L., Scheidler, A., Schäfer, F., Menke, J., Dollichon, J., Meier, F., Meinecke, S., and Braun, M. (2018). Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Transactions on Power Systems, 33(6):6510–6521. doi:10.1109/TPWRS.2018.2829021.eng
dc.relation.referencesWood, A. J., Wollenberg, B. F., and Sheblé, G. B. (2013). Power generation, operation, and control. John Wiley & Sons.eng
dc.rightsDiego Anzola, Julio Castro, Diego Giral - 2021eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/428eng
dc.subjectDespacho económicoeng
dc.subjectFlujo óptimo de potenciaeng
dc.subjectMultiplicadores de Lagrangeeng
dc.subjectOptimización no linealeng
dc.titleHerramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrangespa
dc.title.translatedHerramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrangespa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos