Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.editor | Lepore N. | |
dc.contributor.editor | Brieva J. | |
dc.contributor.editor | Garcia J.D. | |
dc.contributor.editor | Romero E. | |
dc.creator | Flórez-Prias L.A. | |
dc.creator | Contreras Ortiz, Sonia Helena | |
dc.date.accessioned | 2020-03-26T16:32:38Z | |
dc.date.available | 2020-03-26T16:32:38Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels. © 2017 SPIE. | eng |
dc.description.sponsorship | Medical Image Computing and Computer Assisted Intervention (MICCAI);SIPAIM Foundation;Universidad Nacional de Colombia;Universidad Nacional de Colombia, Direccion de Relaciones Exteriores | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10572 | |
dc.identifier.doi | 10.1117/12.2285950 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9781510616332 | |
dc.identifier.issn | 0277786X | |
dc.identifier.orcid | 57199857784 | |
dc.identifier.orcid | 57210822856 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8944 | |
dc.language.iso | eng | |
dc.publisher | SPIE | |
dc.relation.conferencedate | 5 October 2017 through 7 October 2017 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038430967&doi=10.1117%2f12.2285950&partnerID=40&md5=ce5142fe15a705014ee3f0d3a8bdcbb3 | |
dc.source | Scopus2-s2.0-85038430967 | |
dc.source.event | 13th International Conference on Medical Information Processing and Analysis, SIPAIM 2017 | |
dc.subject.keywords | Muscle fatigue | |
dc.subject.keywords | Semg | |
dc.subject.keywords | Wavelet transform | |
dc.subject.keywords | Bioinformatics | |
dc.subject.keywords | Discrete wavelet transforms | |
dc.subject.keywords | Muscle | |
dc.subject.keywords | Signal analysis | |
dc.subject.keywords | Signal processing | |
dc.subject.keywords | Signal reconstruction | |
dc.subject.keywords | Muscle fatigues | |
dc.subject.keywords | Muscular contraction | |
dc.subject.keywords | Muscular fatigues | |
dc.subject.keywords | Noise filtering | |
dc.subject.keywords | Semg | |
dc.subject.keywords | Semg signals | |
dc.subject.keywords | Wavelet transforms | |
dc.title | Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | Martínez, J.A., Fatiga tipos y causas (2013) Rev. Cub. Med. Dep. & Cul. Fisica, 8 (3), pp. 1-14 | |
dcterms.bibliographicCitation | Phinyomark, A., Feature reduction and selection for EMG signal classification (2012) Elsevier, 39 (8), pp. 7420-7431 | |
dcterms.bibliographicCitation | Correa, J.L., Morales, E., Huerta, J.A., Gonzalez, J.J., Cardenas, C.R., Sistema de adquisición de señales semg para la detección de fatiga muscular (2016) Rev. Mex. de Ing. Biomedica, 37 (1), pp. 17-27 | |
dcterms.bibliographicCitation | Yochum, M., Bakir, T., Lepers, R., Binczak, S., Estimation of muscular fatigue under electromyostimulation using cwt (2012) IEEE Trans. on Bio. Engineering, 59 (12), pp. 3372-3378 | |
dcterms.bibliographicCitation | Hussain, M.S., Mamun, M., Effectiveness of the wavelet transform on the surface Emg to understand the muscle fatigue during walk (2012) Measure. Sci. Review, 12 (1), pp. 28-33 | |
dcterms.bibliographicCitation | Chowdhury, R.H., Reaz, M.B.I., Bin Mohd, M.A., Chellappan, K., Chang, T.G., Surface electromyography signal processing and classification techniques (2013) Mdpi Jour. Sensors, 13 (17), pp. 12431-12466 | |
dcterms.bibliographicCitation | Montoya, M., Surface EMG based muscle fatigue detection using a low-cost wearable sensor and amplitude frequency analysis (2015) Conf. Int. de Ingeniería, 1 (1), pp. 29-33 | |
dcterms.bibliographicCitation | Al-Qazzaz, N., Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task (2015) Mdpi Jour. Sensors, 15 (11), pp. 29015-29035 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |