HoloEasy, a web application for computer generated holograms
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.editor | Serrano C. J.E. | |
dc.contributor.editor | Martínez-Santos, Juan Carlos | |
dc.creator | Patiño Vanegas, Alberto | |
dc.creator | Diaz-Pacheco L.L. | |
dc.creator | Patiño-Vanegas J.J. | |
dc.creator | Martínez-Santos J.C. | |
dc.date.accessioned | 2020-03-26T16:32:35Z | |
dc.date.available | 2020-03-26T16:32:35Z | |
dc.date.issued | 2018 | |
dc.description.abstract | If the appropriate phase and/or amplitude profile is placed on a Diffractive Optical Element (DOE) it can practically generate an image of an object (hologram) by diffraction of the light. The problem of generating computer holograms consists of calculating numerically the profile of phase and/or amplitude with which the DOE should be built. Computer Generated Holograms (CGH) can be used to construct general-purpose optical elements in the sense that they serve to transform a spatial distribution of light into any other. In this way, they are used in optical communication systems, laser machining, laser welding, optical readers, human vision, data storage and visualization, image processing, among others. Unlike the optical techniques for generating holograms, in the CGH both the desired image and the phase and/or amplitude distribution are calculated numerically. In this work, a web environment application has been developed to calculate the phase changes that a coherent beam of light must undergo when incident on a DOE, so that it is transformed by Fraunhofer diffraction, in the hologram of an object. We use an algorithm with iterative Fourier transformations (IFTA) that uses regulation and stabilization parameters can be chosen by the user. In addition, the user has the freedom to choose holograms for optical applications (free of speckles) generating initial diffusers of a limited band and without phase singularities. © Springer Nature Switzerland AG 2018. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 885, pp. 471-486 | |
dc.identifier.doi | 10.1007/978-3-319-98998-3_36 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.isbn | 9783319989976 | |
dc.identifier.issn | 18650929 | |
dc.identifier.orcid | 57190688459 | |
dc.identifier.orcid | 57204064204 | |
dc.identifier.orcid | 57204066424 | |
dc.identifier.orcid | 26325154200 | |
dc.identifier.reponame | Repositorio UTB | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8909 | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.relation.conferencedate | 26 September 2018 through 28 September 2018 | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054364104&doi=10.1007%2f978-3-319-98998-3_36&partnerID=40&md5=c8a84000367be52829a021cde74113d5 | |
dc.source.event | 13th Colombian Conference on Computing, CCC 2018 | |
dc.subject.keywords | Computer generated hologram | |
dc.subject.keywords | Diffuser | |
dc.subject.keywords | IFTA | |
dc.subject.keywords | Speckles | |
dc.subject.keywords | Web application | |
dc.subject.keywords | Data visualization | |
dc.subject.keywords | Diffraction | |
dc.subject.keywords | Diffractive optical elements | |
dc.subject.keywords | Diffusers (optical) | |
dc.subject.keywords | Digital storage | |
dc.subject.keywords | Electron holography | |
dc.subject.keywords | Fourier transforms | |
dc.subject.keywords | Holograms | |
dc.subject.keywords | Image communication systems | |
dc.subject.keywords | Image processing | |
dc.subject.keywords | Iterative methods | |
dc.subject.keywords | Lithography | |
dc.subject.keywords | Optical communication | |
dc.subject.keywords | Optical data processing | |
dc.subject.keywords | Optical image storage | |
dc.subject.keywords | Speckle | |
dc.subject.keywords | Amplitude distributions | |
dc.subject.keywords | Computer generated holograms | |
dc.subject.keywords | Fourier transformations | |
dc.subject.keywords | Fraunhofer diffraction | |
dc.subject.keywords | IFTA | |
dc.subject.keywords | Optical applications | |
dc.subject.keywords | Stabilization parameters | |
dc.subject.keywords | Web application | |
dc.subject.keywords | Computer generated holography | |
dc.title | HoloEasy, a web application for computer generated holograms | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Conferencia | |
dcterms.bibliographicCitation | Herzig, H.P., (1998) Micro-Optics: Elements, Systems and Applications, , Taylor and Francis, London | |
dcterms.bibliographicCitation | Wyrowski, F., Diffractive optical elements: Iterative calculation of quantized, blazed structures (1990) J. Opt. Soc. Am., 7, pp. 961-963 | |
dcterms.bibliographicCitation | Pellat-Finet, P., (2009) Optique De Fourier, théorie métaxiale Et Fractionnaire, , Springer, Paris | |
dcterms.bibliographicCitation | Gerchberg, R.W., Saxton, W.O., A practical algorithm for the determination of phase from image and diffraction plane pictures (1972) Optik, 35, pp. 237-346 | |
dcterms.bibliographicCitation | Fienup, J.R., Reconstruction of an object from the modulus of its Fourier transform (1978) Opt. Lett., 3, pp. 27-29 | |
dcterms.bibliographicCitation | Youla, D.C., Generalized image restoration by the method of alternating orthogonal projections (1979) IEEE Trans. Circuits Syst., 25, pp. 694-702 | |
dcterms.bibliographicCitation | Gerchberg, R.W., Super resolution through error energy reduction (1974) Opt. Acta., 21, pp. 709-720 | |
dcterms.bibliographicCitation | Papoulis, A., A new algorithm in spectral analysis an band-limited extrapolation (1975) IEEE Trans. Circuits Syst., 22, pp. 735-742 | |
dcterms.bibliographicCitation | Fienup, J.R., Phase retrieval algorithm for a complicated optical system (1993) Appl. Opt., 32, pp. 1737-1746 | |
dcterms.bibliographicCitation | Wyrowski, F., Bryngdahl, O., Iterative Fourier-transform algorithm applied to computer holography (1988) J. Opt. Soc. A., 5, pp. 1058-1064 | |
dcterms.bibliographicCitation | Aagedal, H., Schmid, M., Beth, T., Teiwes, S., Wyrowski, F., Chaussee, R., Theory of speckles in diffractive optics and its application to beam shaping (1996) J. Mod. Opt., 43, pp. 1409-1421 | |
dcterms.bibliographicCitation | Bräuer, R., Wyrowski, F., Bryngdahl, O., Diffuser in digital holography (1991) J. Opt. Am., 8, pp. 572-578 | |
dcterms.bibliographicCitation | Chhetri, B., Serikawa, S., Shimomura, T., Heuristic algorithm for calculation of sufficiently randomized object-independent diffuser for holography (2000) SPIE, 4113, pp. 205-216 | |
dcterms.bibliographicCitation | Kim, H., Lee, B., Iterative Fourier transform algorithm with adaptative regularization parameter distribution for optimal design of diffractive optical elements (2004) Jpn. J. Appl. Phys., 43, pp. 702-705 | |
dcterms.bibliographicCitation | Tikhonov, A., Goncharsky, V., Stepanov, V., Yagola, A., (1995) Numerical Methods for the Solution of Ill-Posed Problems, , Kluwer Academic, Boston | |
dcterms.bibliographicCitation | Kotlyar, V., Seraphimovich, P., Soifer, V., An iterative algorithm for designing diffractive optical elements with regularization (1998) Opt. Lasers Eng., 29, pp. 261-268 | |
dcterms.bibliographicCitation | Kim, H., Yang, B., Lee, B., Iterative Fourier transform algorithm with regularization for optimal design of diffractive optical elements (2004) J. Opt. Soc. Am. A., 21, pp. 2353-2365 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |