Topological Invariants of Principal G-Bundles with Singularities
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pleiades Publishing
Abstract
principal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifold M defines reduction of the orthonormal frame bundle of M to the subgroup O(n − 1) ⊂ O(n) on the set M \ Σ, where Σ is the set of zeros of this vector field. The aim of this paper is to construct topological invariants of principal bundles with singularities. To do this we apply the obstruction theory to the sectionM → P¯ /Gcorresponding to the reduction and obtain the topological invariant as a class in Hn−k(M,M \ Σ; πn−k−1(G¯ /G)). We study the properties of this invariants and, in particular, consider cases k = 0 y k = n − 1. © 2018, Pleiades Publishing, Ltd.
Description
Keywords
Citation
Lobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-633