An Exact Feedback Linearization Control of a SMES System to Support Power in Electrical Grids

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.creatorMontoya O.D.
dc.creatorGarrido Arévalo, Víctor Manuel
dc.creatorGil-González W.
dc.creatorHolguín E.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:30Z
dc.date.available2020-03-26T16:32:30Z
dc.date.issued2018
dc.description.abstractThis paper presents an exact feedback linearization control strategy to operate superconducting magnetic energy storage (SMES) systems connected to an electric distribution network through a pulse-width-modulated current source converter (PWM-CSC). To model this system an average model is employed by using dq reference frame. The dynamical model of the SMES system considering the PWM-CSC is transformed algebraically into an equivalent linear model by simple substitutions, avoiding to use an equivalent linearization technique or Taylor's series. The linear model preserves all features of the nonlinear model, which allows obtaining control laws to be applicable in its non- linear system. The proposed control scheme permits the active and reactive control of the SMES system in a wide range of operating independently. The effectiveness and the robustness of the proposed control methodology are tested in a low-voltage distribution network considering unbalance and high harmonic distortion in the voltage provided by the utility. All simulation cases are carried out in MATLAB/ODE environment under time domain reference frame, and they are compared with a conventional PI controller. © 2018 IEEE.eng
dc.description.notesThis work was partially supported by COLCIENCIAS through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Universidad Tecnológica de Pereira, UTP
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.doi10.1109/EPIM.2018.8756468
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781538678428
dc.identifier.orcid56919564100
dc.identifier.orcid57208126635
dc.identifier.orcid57191493648
dc.identifier.orcid57204572827
dc.identifier.orcid36449223500
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8855
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate14 November 2018 through 16 November 2018
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069794971&doi=10.1109%2fEPIM.2018.8756468&partnerID=40&md5=088e8424a73cec3eac060ad14b70c66f
dc.source.event9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsLow-voltage distribution network
dc.subject.keywordsPulsed-width modulated current source converter
dc.subject.keywordsSuperconducting magnetic energy storage
dc.subject.keywordsElectric energy storage
dc.subject.keywordsFeedback linearization
dc.subject.keywordsLinear systems
dc.subject.keywordsMagnetic storage
dc.subject.keywordsMATLAB
dc.subject.keywordsNonlinear systems
dc.subject.keywordsPulse width modulation
dc.subject.keywordsRobustness (control systems)
dc.subject.keywordsSpatial variables control
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsVoltage distribution measurement
dc.subject.keywordsConventional-PI controller
dc.subject.keywordsEquivalent linear model
dc.subject.keywordsEquivalent linearization techniques
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsLow voltage distribution network
dc.subject.keywordsModulated current
dc.subject.keywordsSuperconducting magnetic energy storage system
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsElectric power system control
dc.titleAn Exact Feedback Linearization Control of a SMES System to Support Power in Electrical Grids
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.spaConferencia
dcterms.bibliographicCitationJain, N., Singh, S., Srivastava, S., PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model (2014) Swarm Evol. Comput., 19, pp. 15-24
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258
dcterms.bibliographicCitationRuiz, X., Role of the european union in the climate change negotiations (2015) UNISCI Discussion Papers, (39), pp. 105-129. , Oct
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology (2014) Renew Sust Energ Rev, 39, pp. 748-764
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417. , Feb
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales-Noreña, L.F., Nonlinear control for battery energy storage systems in power grids (2018) Green Technologies Conference (GreenTech), 2018, pp. 65-70
dcterms.bibliographicCitationAli, M., Wu, B., Dougal, R., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47. , Apr
dcterms.bibliographicCitationIbrahim, H., Ilinca, A., Perron, J., Energy storage systems-Characteristics and comparisons (2008) Renew Sust Energ Rev, 12 (5), pp. 1221-1250. , Jun
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach (2018) J. Energy Storage, 20, pp. 163-172
dcterms.bibliographicCitationOrtega, A., Milano, F., Comparison of different control strategies for energy storage devices (2016) 2016 Power Systems Computation Conference (PSCC), pp. 1-7. , Jun
dcterms.bibliographicCitationRahim, A.H.M.A., Mohammad, A.M., Khan, M.R., Control of subsynchronous resonant modes in a series compensated system through superconducting magnetic energy storage units (1996) IEEE Trans. Energy Convers., 11 (1), pp. 175-180. , Mar
dcterms.bibliographicCitationLiu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5. , Oct
dcterms.bibliographicCitationSudha, K., Santhi, R., Load frequency control of an interconnected reheat thermal system using type-2 fuzzy system including SMES units (2012) Int. J. Electr. Power Energy Syst., 43 (1), pp. 1383-1392
dcterms.bibliographicCitationAli, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051. , May
dcterms.bibliographicCitationShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Delivery, 23 (4), pp. 2097-2104. , Oct
dcterms.bibliographicCitationKiaei, I., Lotfifard, S., Tube-based model predictive control of energy storage systems for enhancing transient stability of power systems (2017) IEEE Trans. Smart Grid, PP (99), p. 1
dcterms.bibliographicCitationNguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to smes system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5. , June
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150. , March
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: A review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907. , March
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files