Fuel Cell Based Ultra-Voltage Gain Boost Converter for Electric Vehicle Applications

dc.contributor.authorNagi Reddy, B.eng
dc.contributor.authorG. Vinay Kumareng
dc.contributor.authorB. Vinay Kumareng
dc.contributor.authorJhansi, B.eng
dc.contributor.authorSandeep, B.eng
dc.contributor.authorSarada, K.eng
dc.date.accessioned2023-06-28 00:00:00
dc.date.accessioned2025-05-21T19:15:46Z
dc.date.available2023-06-28 00:00:00
dc.date.issued2023-06-28
dc.description.abstractThe proposed fuel cell-based ultra-voltage gain boost converter offers an alternative to transformer-based topologies for achieving high voltage gain. While transformers can achieve high voltage gains, they come with drawbacks such as high cost, design complexity, and increased weight. In this article, a switched inductor circuit is introduced as an alternative solution to achieve high voltage gain. This circuit enhances overall system performance by reducing size, weight, and cost. Operating in a transformer-less topology, the converter boosts voltage levels while ensuring low voltage stress on the switching devices. The suggested design enables larger voltage gain values even at low duty ratios. The output of the fundamental boost converter serves as the input for the switched inductor circuit, effectively boosting the voltage level and supplying more voltage to the output side. This converter is particularly suitable for applications requiring ultra-voltage gain in electric vehicles, which offer reduced pollution compared to internal combustion engines. Moreover, the utilization of this topology reduces space requirements. The article presents a thorough investigation of the steady state operation in continuous conduction mode, and theoretical verification and MATLAB simulations demonstrate the performance and operation of the proposed converter.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol4.n1.519
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13512
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol4.n1.519
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/519/378
dc.relation.citationeditionNúm. 1 , Año 2023 : Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage90
dc.relation.citationissue1eng
dc.relation.citationstartpage68
dc.relation.citationvolume4eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesPhani Teja Bankupalli, Subhojit Ghosh, Lalit Kumar, and Susovon Samanta. Fractional order modeling and two loop control of pem fuel cell for voltage regulation considering both source and load perturbations. International journal of hydrogen energy, 43(12):6294–6309, 2018. [2] Ahmad W Al-Dabbagh, Lixuan Lu, and Antonio Mazza. Modelling, simulation and control of a proton exchange membrane fuel cell (pemfc) power system. International Journal of Hydrogen Energy, 35(10):5061–5069, 2010. [3] Sahithi Priya KOSIKA, Manish Patel GADAM, Jagadhishwar BANOTH, Ashok BANOTH, GOUD Srikanth, et al. Analysis of positive output buck-boost topology with extended conversion ratio. Journal of Energy Systems, 6(1):62–83, 2022. [4] Mohammad Zaid, Chang-Hua Lin, Shahrukh Khan, Javed Ahmad, Mohd Tariq, Arshad Mahmood, Adil Sarwar, Basem Alamri, and Ahmad Alahmadi. A family of transformerless quadratic boost high gain dc-dc converters. Energies, 14(14):4372, 2021. [5] Eduardo Augusto Oliveira Barbosa, Márcio Rodrigo Santos de Carvalho, Leonardo Rodrigues Limongi, Marcelo Cabral Cavalcanti, Eduardo José Barbosa, and Gustavo Medeiros de Souza Azevedo. High-gain high-efficiency dc–dc converter with single-core parallel operation switched inductors and rectifier voltage multiplier cell. Energies, 14(15):4634, 2021. [6] Aline VC Pereira, Marcelo C Cavalcanti, Gustavo M Azevedo, Fabrício Bradaschia, Rafael C Neto, and Márcio Rodrigo Santos de Carvalho. A novel single-switch high step-up dc–dc converter with three-winding coupled inductor. Energies, 14(19):6288, 2021. [7] Lucas Carvalho Souza, Douglas Carvalho Morais, Luciano de Souza da Costa e Silva, Falcondes José Mendes de Seixas, and Luis De Oro Arenas. Dc-dc 3ssc-a-based boost converter: Analysis, design, and experimental validation. Energies, 14(20):6771, 2021. [8] Hossein Gholizadeh, Saman A Gorji, Ebrahim Afjei, and Dezso Sera. Design and implementation of a new cuk-based step-up dc–dc converter. Energies, 14(21):6975, 2021. [9] Jian Ai and Mingyao Lin. Ultralarge gain step-up coupled-inductor dc–dc converter with an asymmetric voltage multiplier network for a sustainable energy system. IEEE Transactions on Power Electronics, 32(9):6896–6903, 2016. [10] Yun Zhang, Yongping Gao, Lei Zhou, and Mark Sumner. A switched-capacitor bidirectional dc–dc converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Transactions on Power Electronics, 33(11):9459–9469, 2018. [11] Boris Axelrod, Yefim Berkovich, and Adrian Ioinovici. Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc pwm converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(2):687–696, 2008. [12] Chung-Ming Young, Ming-Hui Chen, Tsun-An Chang, Chun-Cho Ko, and Kuo-Kuang Jen. Cascade cockcroft–walton voltage multiplier applied to transformerless high step-up dc–dc converter. IEEE transactions on industrial electronics, 60(2):523–537, 2012. [13] Fernando Lessa Tofoli, Denis de Castro Pereira, Wesley Josias de Paula, and Demercil de Sousa Oliveira Junior. Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET power Electronics, 8(10):2044–2057, 2015. [14] Zbigniew Waradzyn, Robert Stala, Andrzej Mondzik, Adam Penczek, Aleksander Skala, and Stanislaw Pirog. Efficiency analysis of mosfet-based air-choke resonant dc–dc step-up switched-capacitor voltage multipliers. IEEE Transactions on Industrial Electronics, 64(11):8728–8738, 2017. [15] Alon Cervera, Michael Evzelman, Mor Mordechai Peretz, and Shmuel Ben-Yaakov. A high-efficiency resonant switched capacitor converter with continuous conversion ratio. IEEE Transactions on Power Electronics, 30(3):1373–1382, 2014. [16] Andrii Chub, Dmitri Vinnikov, Frede Blaabjerg, and Fang Zheng Peng. A review of galvanically isolated impedance-source dc–dc converters. IEEE Transactions on Power Electronics, 31(4):2808–2828, 2015. [17] Omar Abdel-Rahim, Andrii Chub, Andrei Blinov, and Dmitri Vinnikov. New high-gain non-inverting buck-boost converter. IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, pages 1–6, 2021. [18] Álvaro Ojeda-Rodríguez, Pablo González-Vizuete, Joaquín Bernal-Méndez, and María A Martín-Prats. A survey on bidirectional dc/dc power converter topologies for the future hybrid and all electric aircrafts. Energies, 13(18):4883, 2020. [19] Alencar Franco de Souza, Fernando Lessa Tofoli, and Enio Roberto Ribeiro. Switched capacitor dc-dc converters: A survey on the main topologies, design characteristics, and applications. Energies, 14(8):2231, 2021. [20] Mojtaba Forouzesh, Yam P Siwakoti, Saman A Gorji, Frede Blaabjerg, and Brad Lehman. Step-up dc–dc converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE transactions on power electronics, 32(12):9143–9178, 2017. [21] António Manuel Santos Spencer Andrade and Mário Lùcio da Silva Martins. Quadratic-boost with stacked zeta converter for high voltage gain applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(4):1787–1796, 2017. [22] Robert Stala, Zbigniew Waradzyn, Andrzej Mondzik, Adam Penczek, and Aleksander Skała. Dc–dc high step-up converter with low count of switches based on resonant switched-capacitor topology. 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), pages P–1, 2019. [23] Masahito Shoyama, Toshiyuki Naka, and Tamotsu Ninomiya. Resonant switched capacitor converter with high efficiency. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), 5:3780–3786, 2004. [24] Hossein Ardi, Ali Ajami, Faezeh Kardan, and Shahla Nikpour Avilagh. Analysis and implementation of a nonisolated bidirectional dc–dc converter with high voltage gain. IEEE Transactions on Industrial Electronics, 63(8):4878–4888, 2016. [25] Javed Ahmad, Mohammad Zaid, Adil Sarwar, Chang-Hua Lin, Mohammed Asim, Raj Kumar Yadav, Mohd Tariq, Kuntal Satpathi, and Basem Alamri. A new high-gain dc-dc converter with continuous input current for dc microgrid applications. Energies, 14(9):2629, 2021. [26] Roger Gules, L Lopes Pfitscher, and L Claudio Franco. An interleaved boost dc-dc converter with large conversion ratio. 2003 IEEE International Symposium on Industrial Electronics (Cat. No. 03TH8692), 1:411–416, 2003. [27] Gang Wu, Xinbo Ruan, and Zhihong Ye. Nonisolated high step-up dc–dc converters adopting switched-capacitor cell. IEEE Transactions on Industrial Electronics, 62(1):383–393, 2014.eng
dc.rightsB. Nagi Reddy, G. Vinay Kumar, B. Vinay Kumar, B. Jhansi, B. Sandeep; K. Sarada - 2023eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/519eng
dc.subjectDC-DC Convertereng
dc.subjectElectric vehicleseng
dc.subjectfuel cellseng
dc.subjectContinuous Conduction Mode (CCM)eng
dc.subjectEnergy Efficiencyeng
dc.titleFuel Cell Based Ultra-Voltage Gain Boost Converter for Electric Vehicle Applicationsspa
dc.title.translatedFuel Cell Based Ultra-Voltage Gain Boost Converter for Electric Vehicle Applicationsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos