Mostrar el registro sencillo del ítem

dc.contributor.authorFuentes, Jose Eduardo
dc.contributor.authorMoya, Francisco David
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2021-02-15T16:06:40Z
dc.date.available2021-02-15T16:06:40Z
dc.date.issued2020-12-14
dc.date.submitted2021-02-12
dc.identifier.citationFuentes, J.E.; Moya, F.D.; Montoya, O.D. Method for Estimating Solar Energy Potential Based on Photogrammetry from Unmanned Aerial Vehicles. Electronics 2020, 9, 2144. https://doi.org/10.3390/electronics9122144spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9994
dc.description.abstractThis study presents a method to estimate the solar energy potential based on 3D data taken from unmanned aerial devices. The solar energy potential on the roof of a building was estimated before the placement of solar panels using photogrammetric data analyzed in a geographic information system, and the predictions were compared with the data recorded after installation. The areas of the roofs were chosen using digital surface models and the hemispherical viewshed algorithm, considering how the solar radiation on the roof surface would be affected by the orientation of the surface with respect to the sun, the shade of trees, surrounding objects, topography, and the atmospheric conditions. The results show that the efficiency percentages of the panels and the data modeled by the proposed method from surface models are very similar to the theoretical efficiency of the panels. Radiation potential can be estimated from photogrammetric data and a 3D model in great detail and at low cost. This method allows the estimation of solar potential as well as the optimization of the location and orientation of solar panels.spa
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(12), 2144spa
dc.titleMethod for estimating solar energy potential based on photogrammetry from unmanned aerial vehiclesspa
dcterms.bibliographicCitationIDEAM; UPME. Atlas de radiación solar de Colombia. UPME (Unidad de Planeación Minero-Energética), IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2005. Available online: http://www.cambioclimatico.gov.co/documents/21021/21129/1-+Preliminares.pdf/2a207e33-fe43-4aa3-930d-70ba60b10d57 (accessed on 15 August 2020).spa
dcterms.bibliographicCitationSawin, J.L.; Sverrisson, F.; Rickerson, W. Renewables 2014 Global Status Report; Renewable Energy Policy Network for the 21 Century: Paris, France, 2014; p. 46.spa
dcterms.bibliographicCitationBenavides Ballesteros, H.O.; Simbaqueva Fonseca, O.; Zapata Lesmes, H.J. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; IDEAM-UPME-Fundación Universitaria Los Libertadores-Colciencias: Bogotá, Colombia, 2017.spa
dcterms.bibliographicCitationKodysh, J.B.; Omitaomu, O.A.; Bhaduri, B.L.; Neish, B.S. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain. Cities Soc. 2013, 8, 31–41.spa
dcterms.bibliographicCitationRenné, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D. Solar Resource Assessment; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2008.spa
dcterms.bibliographicCitationUPME. Integración de las Energías Renovables no Convencionales en Colombia; Ministerio de Minas y Energía: Bogotá, Colombia, 2015; p. 370.spa
dcterms.bibliographicCitationLeng, G.J. RETScreenTM international: A decision support and capacity building tool for assessing potential renewable energy projects. Ind. Environ. 2000, 23, 22–23.spa
dcterms.bibliographicCitationLambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385.spa
dcterms.bibliographicCitationLalwani, M.; Kothari, D.P.; Singh, M. Investigation of solar photovoltaic simulation softwares. Int. J. Appl. Eng. Res. 2010, 1, 585–601.spa
dcterms.bibliographicCitationTurcotte, D.; Ross, M.; Sheriff, F. Photovoltaic Hybrid System Sizing and Simulation Tools: Status and Needs. 2001; pp. 1–10. Available online: http://www.rerinfo.ca/documents/prPVHorizon2001SizingSim1.pdf (accessed on 25 July 2020).spa
dcterms.bibliographicCitationTurchi, C. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM); National Renewable Energy Laboratory (U.S.): Golden, CO, USA, 2010.spa
dcterms.bibliographicCitationMermoud, A.; Wittmer, B. PVSYST User’s Manual. Switzerland, January 2014. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/73830/download/660275/100.pdf (accessed on 21 August 2020).spa
dcterms.bibliographicCitationShrivastava, R.L.; Vinod, K.; Untawale, S.P. Modeling and simulation of solar water heater: A TRNSYS perspective. Renew. Sustain. Energy Rev. 2017, 67, 126–143.spa
dcterms.bibliographicCitationColak, H.E.; Memisoglu, T.; Gercek, Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576.spa
dcterms.bibliographicCitationNelson, J.R.; Grubesic, T.H. The use of LiDAR versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. Sustain. Cities Soc. 2020, 61, 102353.spa
dcterms.bibliographicCitationGuo, Z.; Zhang, Z.; Wu, X.; Wang, J.; Zhang, P.; Ma, D.; Liu, Y. Building shading affects the ecosystem service of urban green spaces: Carbon capture in street canyons. Ecol. Model. 2020, 431, 109178.spa
dcterms.bibliographicCitationHuang, Z.; Mendis, T.; Xu, S. Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China. Appl. Energy 2019, 250, 283–291.spa
dcterms.bibliographicCitationMoudrý, V.; Beková, A.; Lagner, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sens. Lett. 2019, 10, 1077–1085.spa
dcterms.bibliographicCitationQuirós, E.; Pozo, M.; Ceballos, J. Solar potential of rooftops in Cáceres city, Spain. J. Maps 2018, 14, 44–51.spa
dcterms.bibliographicCitationMachete, R.; Falcão, A.P.; Gomes, M.G.; Moret Rodrigues, A. The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential. Energy Build. 2018, 177, 290–302.spa
dcterms.bibliographicCitationTogawa, T.; Fujita, T.; Dong, L.; Ohnishi, S.; Fujii, M. Integrating GIS databases and ICT applications for the design of energy circulation systems. J. Clean. Prod. 2016, 114, 224–232.spa
dcterms.bibliographicCitationHalama, J.J.; Kennedy, R.E.; Graham, J.J.; McKane, R.B.; Barnhart, B.L.; Djang, K.S.; Pettus, P.B.; Brookes, A.F.; Wingo, P.C. Penumbra: A spatially distributed, mechanistic model for simulating ground-level incident solar energy across heterogeneous landscapes. PLoS ONE 2018, 13, e0206439.spa
dcterms.bibliographicCitationUsta, Z.; Comert, C.; Yilmaz, V. Solar Energy Potential of Cities in Turkey; a Gis Based Analysis. Fresenius Environ. Bull. 2017, 26, 80–83.spa
dcterms.bibliographicCitationSalimzadeh, N.; Hammad, A. High-level framework for GIS-based optimization of building photovoltaic potential at urban scale using BIM and LiDAR. In Proceedings of the International Conference on Sustainable Infrastructure, New York, NY, USA, 26–28 October 2017; pp. 123–134.spa
dcterms.bibliographicCitationLingfors, D.; Bright, J.M.; Engerer, N.A.; Ahlberg, J.; Killinger, S.; Widén, J. Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 2017, 205, 1216–1230.spa
dcterms.bibliographicCitationChow, A.; Li, S.; Fung, A.S. Modeling urban solar energy with high spatiotemporal resolution: A case study in Toronto, Canada. Int. J. Green Energy 2016, 13, 1090–1101.spa
dcterms.bibliographicCitationSzabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. J. Clean. Prod. 2016, 112, 3820–3829.spa
dcterms.bibliographicCitationFogl, M.; Moudrý, V. Influence of vegetation canopies on solar potential in urban environments. Appl. Geogr. 2016, 66, 73–80.spa
dcterms.bibliographicCitationLi, X.; Zhang, S.; Chen, Y. Error assessment of grid-based diffuse solar radiation models. Int. J. Geogr. Inf. Sci. 2016, 30, 2032–2049.spa
dcterms.bibliographicCitationHuang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data. Remote Sens. 2015, 7, 17212–17233.spa
dcterms.bibliographicCitationKo, L.; Wang, J.-C.; Chen, C.-Y.; Tsai, H.-Y. Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renew. Energy 2015, 76, 582–595.spa
dcterms.bibliographicCitationByrne, J.; Taminiau, J.; Kurdgelashvili, L.; Kim, K.N. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 2015, 41, 830–844.spa
dcterms.bibliographicCitationErdélyi, R.; Wang, Y.; Guo, W.; Hanna, E.; Colantuono, G. Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D urban planning. Sol. Energy 2014, 101, 63–73.spa
dcterms.bibliographicCitationLukač, N.; Žlaus, D.; Seme, S.; Žalik, B.; Štumberger, G. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Appl. Energy 2013, 102, 803–812.spa
dcterms.bibliographicCitationAgugiaro, G.; Nex, F.; Remondino, F.; De Filippi, R.; Droghetti, S.; Furlanello, C. Solar radiation estimation on building roofs and web-based solar cadaster. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-2, 177–182.spa
dcterms.bibliographicCitationHofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214.spa
dcterms.bibliographicCitationIzquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939.spa
dcterms.bibliographicCitationGadsden, S.; Rylatt, M.; Lomas, K. Putting solar energy on the urban map: A new GIS-based approach for dwellings. Sol. Energy 2003, 74, 397–407.spa
dcterms.bibliographicCitationFu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35.spa
dcterms.bibliographicCitationFu, P.; Rich, P.M. The Solar Analyst 1.0 User Manual; Helios Environmental Modeling Institute: Washington DC, USA, 2000.spa
dcterms.bibliographicCitationHetrick, W.A.; Rich, P.M.; Weiss, S.B. Modeling insolation on complex surfaces. In Proceedings of the Thirteenth Annual ESRI User Conference, Palm Springs, CA, USA, 24–28 May 1993; pp. 447–458.spa
dcterms.bibliographicCitationRich, P.; Dubayah, R.C.; Hetrick, W.; Saving, S. Using Viewshed Models to Calculate Intercepted Solar Radiation: Applications in Ecology; American Society for Photogrammetry and Remote Sensing Technical Papers; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1994; pp. 524–529. Available online: http://professorpaul.com/publications/rich_et_al_1994_asprs.pdf (accessed on 20 September 2020).spa
dcterms.bibliographicCitationRich, P.M.; Hetrick, W.A.; Saving, S.C. Modeling Topographic Influences on Solar Radiation: A Manual for the SOLARFLUX Model; Los Alamos National Lab: Santa Fe, NM, USA, 1995.spa
dcterms.bibliographicCitationRůžičková, K.; Inspektor, T. Surface Models for Geosciences; Springer: Berlin/Heidelberg, Germany, 2015.spa
dcterms.bibliographicCitationIDEAM. Características Climatológicas de Ciudades Principales y Municipios Turísticos de Colombia; IDEAM: Bogotá, Colombia, 2012; p. 48. Available online: http://www.ideam.gov.co/documents/21021/418894/Caracter%C3%ADsticas+de+Ciudades+Principales+y+Municipios+Tur%C3%ADsticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc (accessed on 20 September 2020).spa
dcterms.bibliographicCitationVerdiseno. Solar Design Tool. 2020. Available online: https://get.solardesigntool.com/ (accessed on 10 August 2020).spa
dcterms.bibliographicCitationHybrytec. Informe Técnico Sistema Fotovoltaico Universidad Santiago de Cali; Hybrytec: Itagüí, Colombia, 2018; p. 50.spa
dcterms.bibliographicCitationPeppa, M.V.; Hall, J.; Goodyear, J.; Mills, J.P. Photogrammetric Assessment and Comparison of Dji Phantom 4 Pro and Phantom 4 Rtk Small Unmanned Aircraft Systems. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 503–509.spa
dcterms.bibliographicCitationFuentes, J. Comparación de modelos de altura de la vegetación para estimación de biomasa en un bosque de manglar en el Caribe Colombiano. Entorno Geográfico 2020, 1–18.spa
dcterms.bibliographicCitationProšek, J.; Šímová, P. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162.spa
dcterms.bibliographicCitationFuentes, J.; Varga, D.; Boada, M. Distribución del Patrón espacial tipo Leopardo en regiones áridas y semiáridas del mundo. Boletín Asoc. Geógrafos Españoles 2016.spa
dcterms.bibliographicCitationŠúri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190spa
dcterms.bibliographicCitationMauro-Díaz, G.; Lencinas, J.D.; del Valle, H. Introducción a la fotografía hemisférica en ciencias forestales. Madera y Bosques 2014, 20, 109–117.spa
dcterms.bibliographicCitationFu, P.; Rich, P.M. Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at Landscape Scales. 1999; pp. 1–31. Available online: https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm (accessed on 15 May 2020).spa
dcterms.bibliographicCitationFröhlich, C.; Brusa, R.W. Solar radiation and its variation in time. Sol. Phys. 1981, 74, 209–215.spa
dcterms.bibliographicCitationTukiainen, M. Sunrise, Sunset, Dawn and Dusk Times around the World. 2019. Available online: https://www.gaisma.com/en/location/cali.html (accessed on 10 July 2020).spa
dcterms.bibliographicCitationKandasamy, C.P.; Prabu, P.; Niruba, K. Solar potential assessment using PVSYST software. In Proceedings of the 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Tamil Nadu, India, 12–14 December 2013; pp. 667–672.spa
dcterms.bibliographicCitationMasoum, A.S.; Moses, P.S.; Masoum, M.A.S.; Abu-Siada, A. Impact of rooftop PV generation on distribution transformer and voltage profile of residential and commercial networks. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7.spa
dcterms.bibliographicCitationXm. Carbon Dioxide Emissions per Unit of Energy. Indicators Database. 2020. Available online: https://www.xm.com.co/Paginas/Indicadores/Oferta/Indicador-aportes-hidricos.aspx (accessed on 12 August 2020).spa
dcterms.bibliographicCitationAlmosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater. 2018, 19, 336–369.spa
dcterms.bibliographicCitationGreen, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/12/2144
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9122144
dc.subject.keywordsUnmanned aerial vehiclespa
dc.subject.keywordsSolar irradiationspa
dc.subject.keywordsGeographic information systemsspa
dc.subject.keywordsPhotovoltaic systemsspa
dc.subject.keywordsDigital surface modelspa
dc.subject.keywordsSolar panel efficiencyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.