Mostrar el registro sencillo del ítem
Method for estimating solar energy potential based on photogrammetry from unmanned aerial vehicles
dc.contributor.author | Fuentes, Jose Eduardo | |
dc.contributor.author | Moya, Francisco David | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.date.accessioned | 2021-02-15T16:06:40Z | |
dc.date.available | 2021-02-15T16:06:40Z | |
dc.date.issued | 2020-12-14 | |
dc.date.submitted | 2021-02-12 | |
dc.identifier.citation | Fuentes, J.E.; Moya, F.D.; Montoya, O.D. Method for Estimating Solar Energy Potential Based on Photogrammetry from Unmanned Aerial Vehicles. Electronics 2020, 9, 2144. https://doi.org/10.3390/electronics9122144 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9994 | |
dc.description.abstract | This study presents a method to estimate the solar energy potential based on 3D data taken from unmanned aerial devices. The solar energy potential on the roof of a building was estimated before the placement of solar panels using photogrammetric data analyzed in a geographic information system, and the predictions were compared with the data recorded after installation. The areas of the roofs were chosen using digital surface models and the hemispherical viewshed algorithm, considering how the solar radiation on the roof surface would be affected by the orientation of the surface with respect to the sun, the shade of trees, surrounding objects, topography, and the atmospheric conditions. The results show that the efficiency percentages of the panels and the data modeled by the proposed method from surface models are very similar to the theoretical efficiency of the panels. Radiation potential can be estimated from photogrammetric data and a 3D model in great detail and at low cost. This method allows the estimation of solar potential as well as the optimization of the location and orientation of solar panels. | spa |
dc.format.extent | 21 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Electronics 2020, 9(12), 2144 | spa |
dc.title | Method for estimating solar energy potential based on photogrammetry from unmanned aerial vehicles | spa |
dcterms.bibliographicCitation | IDEAM; UPME. Atlas de radiación solar de Colombia. UPME (Unidad de Planeación Minero-Energética), IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2005. Available online: http://www.cambioclimatico.gov.co/documents/21021/21129/1-+Preliminares.pdf/2a207e33-fe43-4aa3-930d-70ba60b10d57 (accessed on 15 August 2020). | spa |
dcterms.bibliographicCitation | Sawin, J.L.; Sverrisson, F.; Rickerson, W. Renewables 2014 Global Status Report; Renewable Energy Policy Network for the 21 Century: Paris, France, 2014; p. 46. | spa |
dcterms.bibliographicCitation | Benavides Ballesteros, H.O.; Simbaqueva Fonseca, O.; Zapata Lesmes, H.J. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; IDEAM-UPME-Fundación Universitaria Los Libertadores-Colciencias: Bogotá, Colombia, 2017. | spa |
dcterms.bibliographicCitation | Kodysh, J.B.; Omitaomu, O.A.; Bhaduri, B.L.; Neish, B.S. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain. Cities Soc. 2013, 8, 31–41. | spa |
dcterms.bibliographicCitation | Renné, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D. Solar Resource Assessment; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2008. | spa |
dcterms.bibliographicCitation | UPME. Integración de las Energías Renovables no Convencionales en Colombia; Ministerio de Minas y Energía: Bogotá, Colombia, 2015; p. 370. | spa |
dcterms.bibliographicCitation | Leng, G.J. RETScreenTM international: A decision support and capacity building tool for assessing potential renewable energy projects. Ind. Environ. 2000, 23, 22–23. | spa |
dcterms.bibliographicCitation | Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. | spa |
dcterms.bibliographicCitation | Lalwani, M.; Kothari, D.P.; Singh, M. Investigation of solar photovoltaic simulation softwares. Int. J. Appl. Eng. Res. 2010, 1, 585–601. | spa |
dcterms.bibliographicCitation | Turcotte, D.; Ross, M.; Sheriff, F. Photovoltaic Hybrid System Sizing and Simulation Tools: Status and Needs. 2001; pp. 1–10. Available online: http://www.rerinfo.ca/documents/prPVHorizon2001SizingSim1.pdf (accessed on 25 July 2020). | spa |
dcterms.bibliographicCitation | Turchi, C. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM); National Renewable Energy Laboratory (U.S.): Golden, CO, USA, 2010. | spa |
dcterms.bibliographicCitation | Mermoud, A.; Wittmer, B. PVSYST User’s Manual. Switzerland, January 2014. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/73830/download/660275/100.pdf (accessed on 21 August 2020). | spa |
dcterms.bibliographicCitation | Shrivastava, R.L.; Vinod, K.; Untawale, S.P. Modeling and simulation of solar water heater: A TRNSYS perspective. Renew. Sustain. Energy Rev. 2017, 67, 126–143. | spa |
dcterms.bibliographicCitation | Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. | spa |
dcterms.bibliographicCitation | Nelson, J.R.; Grubesic, T.H. The use of LiDAR versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. Sustain. Cities Soc. 2020, 61, 102353. | spa |
dcterms.bibliographicCitation | Guo, Z.; Zhang, Z.; Wu, X.; Wang, J.; Zhang, P.; Ma, D.; Liu, Y. Building shading affects the ecosystem service of urban green spaces: Carbon capture in street canyons. Ecol. Model. 2020, 431, 109178. | spa |
dcterms.bibliographicCitation | Huang, Z.; Mendis, T.; Xu, S. Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China. Appl. Energy 2019, 250, 283–291. | spa |
dcterms.bibliographicCitation | Moudrý, V.; Beková, A.; Lagner, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sens. Lett. 2019, 10, 1077–1085. | spa |
dcterms.bibliographicCitation | Quirós, E.; Pozo, M.; Ceballos, J. Solar potential of rooftops in Cáceres city, Spain. J. Maps 2018, 14, 44–51. | spa |
dcterms.bibliographicCitation | Machete, R.; Falcão, A.P.; Gomes, M.G.; Moret Rodrigues, A. The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential. Energy Build. 2018, 177, 290–302. | spa |
dcterms.bibliographicCitation | Togawa, T.; Fujita, T.; Dong, L.; Ohnishi, S.; Fujii, M. Integrating GIS databases and ICT applications for the design of energy circulation systems. J. Clean. Prod. 2016, 114, 224–232. | spa |
dcterms.bibliographicCitation | Halama, J.J.; Kennedy, R.E.; Graham, J.J.; McKane, R.B.; Barnhart, B.L.; Djang, K.S.; Pettus, P.B.; Brookes, A.F.; Wingo, P.C. Penumbra: A spatially distributed, mechanistic model for simulating ground-level incident solar energy across heterogeneous landscapes. PLoS ONE 2018, 13, e0206439. | spa |
dcterms.bibliographicCitation | Usta, Z.; Comert, C.; Yilmaz, V. Solar Energy Potential of Cities in Turkey; a Gis Based Analysis. Fresenius Environ. Bull. 2017, 26, 80–83. | spa |
dcterms.bibliographicCitation | Salimzadeh, N.; Hammad, A. High-level framework for GIS-based optimization of building photovoltaic potential at urban scale using BIM and LiDAR. In Proceedings of the International Conference on Sustainable Infrastructure, New York, NY, USA, 26–28 October 2017; pp. 123–134. | spa |
dcterms.bibliographicCitation | Lingfors, D.; Bright, J.M.; Engerer, N.A.; Ahlberg, J.; Killinger, S.; Widén, J. Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 2017, 205, 1216–1230. | spa |
dcterms.bibliographicCitation | Chow, A.; Li, S.; Fung, A.S. Modeling urban solar energy with high spatiotemporal resolution: A case study in Toronto, Canada. Int. J. Green Energy 2016, 13, 1090–1101. | spa |
dcterms.bibliographicCitation | Szabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. J. Clean. Prod. 2016, 112, 3820–3829. | spa |
dcterms.bibliographicCitation | Fogl, M.; Moudrý, V. Influence of vegetation canopies on solar potential in urban environments. Appl. Geogr. 2016, 66, 73–80. | spa |
dcterms.bibliographicCitation | Li, X.; Zhang, S.; Chen, Y. Error assessment of grid-based diffuse solar radiation models. Int. J. Geogr. Inf. Sci. 2016, 30, 2032–2049. | spa |
dcterms.bibliographicCitation | Huang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data. Remote Sens. 2015, 7, 17212–17233. | spa |
dcterms.bibliographicCitation | Ko, L.; Wang, J.-C.; Chen, C.-Y.; Tsai, H.-Y. Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renew. Energy 2015, 76, 582–595. | spa |
dcterms.bibliographicCitation | Byrne, J.; Taminiau, J.; Kurdgelashvili, L.; Kim, K.N. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 2015, 41, 830–844. | spa |
dcterms.bibliographicCitation | Erdélyi, R.; Wang, Y.; Guo, W.; Hanna, E.; Colantuono, G. Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D urban planning. Sol. Energy 2014, 101, 63–73. | spa |
dcterms.bibliographicCitation | Lukač, N.; Žlaus, D.; Seme, S.; Žalik, B.; Štumberger, G. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Appl. Energy 2013, 102, 803–812. | spa |
dcterms.bibliographicCitation | Agugiaro, G.; Nex, F.; Remondino, F.; De Filippi, R.; Droghetti, S.; Furlanello, C. Solar radiation estimation on building roofs and web-based solar cadaster. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-2, 177–182. | spa |
dcterms.bibliographicCitation | Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214. | spa |
dcterms.bibliographicCitation | Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. | spa |
dcterms.bibliographicCitation | Gadsden, S.; Rylatt, M.; Lomas, K. Putting solar energy on the urban map: A new GIS-based approach for dwellings. Sol. Energy 2003, 74, 397–407. | spa |
dcterms.bibliographicCitation | Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. | spa |
dcterms.bibliographicCitation | Fu, P.; Rich, P.M. The Solar Analyst 1.0 User Manual; Helios Environmental Modeling Institute: Washington DC, USA, 2000. | spa |
dcterms.bibliographicCitation | Hetrick, W.A.; Rich, P.M.; Weiss, S.B. Modeling insolation on complex surfaces. In Proceedings of the Thirteenth Annual ESRI User Conference, Palm Springs, CA, USA, 24–28 May 1993; pp. 447–458. | spa |
dcterms.bibliographicCitation | Rich, P.; Dubayah, R.C.; Hetrick, W.; Saving, S. Using Viewshed Models to Calculate Intercepted Solar Radiation: Applications in Ecology; American Society for Photogrammetry and Remote Sensing Technical Papers; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1994; pp. 524–529. Available online: http://professorpaul.com/publications/rich_et_al_1994_asprs.pdf (accessed on 20 September 2020). | spa |
dcterms.bibliographicCitation | Rich, P.M.; Hetrick, W.A.; Saving, S.C. Modeling Topographic Influences on Solar Radiation: A Manual for the SOLARFLUX Model; Los Alamos National Lab: Santa Fe, NM, USA, 1995. | spa |
dcterms.bibliographicCitation | Růžičková, K.; Inspektor, T. Surface Models for Geosciences; Springer: Berlin/Heidelberg, Germany, 2015. | spa |
dcterms.bibliographicCitation | IDEAM. Características Climatológicas de Ciudades Principales y Municipios Turísticos de Colombia; IDEAM: Bogotá, Colombia, 2012; p. 48. Available online: http://www.ideam.gov.co/documents/21021/418894/Caracter%C3%ADsticas+de+Ciudades+Principales+y+Municipios+Tur%C3%ADsticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc (accessed on 20 September 2020). | spa |
dcterms.bibliographicCitation | Verdiseno. Solar Design Tool. 2020. Available online: https://get.solardesigntool.com/ (accessed on 10 August 2020). | spa |
dcterms.bibliographicCitation | Hybrytec. Informe Técnico Sistema Fotovoltaico Universidad Santiago de Cali; Hybrytec: Itagüí, Colombia, 2018; p. 50. | spa |
dcterms.bibliographicCitation | Peppa, M.V.; Hall, J.; Goodyear, J.; Mills, J.P. Photogrammetric Assessment and Comparison of Dji Phantom 4 Pro and Phantom 4 Rtk Small Unmanned Aircraft Systems. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 503–509. | spa |
dcterms.bibliographicCitation | Fuentes, J. Comparación de modelos de altura de la vegetación para estimación de biomasa en un bosque de manglar en el Caribe Colombiano. Entorno Geográfico 2020, 1–18. | spa |
dcterms.bibliographicCitation | Prošek, J.; Šímová, P. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. | spa |
dcterms.bibliographicCitation | Fuentes, J.; Varga, D.; Boada, M. Distribución del Patrón espacial tipo Leopardo en regiones áridas y semiáridas del mundo. Boletín Asoc. Geógrafos Españoles 2016. | spa |
dcterms.bibliographicCitation | Šúri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190 | spa |
dcterms.bibliographicCitation | Mauro-Díaz, G.; Lencinas, J.D.; del Valle, H. Introducción a la fotografía hemisférica en ciencias forestales. Madera y Bosques 2014, 20, 109–117. | spa |
dcterms.bibliographicCitation | Fu, P.; Rich, P.M. Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at Landscape Scales. 1999; pp. 1–31. Available online: https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm (accessed on 15 May 2020). | spa |
dcterms.bibliographicCitation | Fröhlich, C.; Brusa, R.W. Solar radiation and its variation in time. Sol. Phys. 1981, 74, 209–215. | spa |
dcterms.bibliographicCitation | Tukiainen, M. Sunrise, Sunset, Dawn and Dusk Times around the World. 2019. Available online: https://www.gaisma.com/en/location/cali.html (accessed on 10 July 2020). | spa |
dcterms.bibliographicCitation | Kandasamy, C.P.; Prabu, P.; Niruba, K. Solar potential assessment using PVSYST software. In Proceedings of the 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Tamil Nadu, India, 12–14 December 2013; pp. 667–672. | spa |
dcterms.bibliographicCitation | Masoum, A.S.; Moses, P.S.; Masoum, M.A.S.; Abu-Siada, A. Impact of rooftop PV generation on distribution transformer and voltage profile of residential and commercial networks. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7. | spa |
dcterms.bibliographicCitation | Xm. Carbon Dioxide Emissions per Unit of Energy. Indicators Database. 2020. Available online: https://www.xm.com.co/Paginas/Indicadores/Oferta/Indicador-aportes-hidricos.aspx (accessed on 12 August 2020). | spa |
dcterms.bibliographicCitation | Almosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater. 2018, 19, 336–369. | spa |
dcterms.bibliographicCitation | Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://www.mdpi.com/2079-9292/9/12/2144 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/electronics9122144 | |
dc.subject.keywords | Unmanned aerial vehicle | spa |
dc.subject.keywords | Solar irradiation | spa |
dc.subject.keywords | Geographic information systems | spa |
dc.subject.keywords | Photovoltaic systems | spa |
dc.subject.keywords | Digital surface model | spa |
dc.subject.keywords | Solar panel efficiency | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.