Mostrar el registro sencillo del ítem

dc.contributor.authorMercado-Aguirre, Isabela M.
dc.contributor.authorGutierrez-Ruiz, Karol P.
dc.contributor.authorContreras Ortiz, Sonia Helena
dc.date.accessioned2021-02-09T22:05:51Z
dc.date.available2021-02-09T22:05:51Z
dc.date.issued2020-11-03
dc.date.submitted2021-02-09
dc.identifier.citationIsabela M. Mercado-Aguirre, Karol P. Gutierrez-Ruiz, and Sonia H. Contreras-Ortiz "EEG feature selection for ADHD detection in children", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830S (3 November 2020); https://doi.org/10.1117/12.2579625spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9970
dc.description.abstractAttention deficit and hyperactivity disorder (ADHD) is a medical condition that affects approximately 7% of children worldwide. The diagnosis of ADHD can be done using psychological tests and electroencephalography (EEG). However, the variability and complexity of EEG signals affects its diagnostic utility. The purpose of this work is to identify relevant features of EEG signals from children diagnosed with ADHD and control cases for their classification. A total of 47 children were included in the study (22 with ADHD and 25 in the control group). EEG of cognitive evoked potentials were preprocessed using wavelet filtering and synchronized averaging. Then, fourteen features were calculated in signals from four channels (F3, AF3, F4 and AF4), including evoked potentials, power spectrum, entropy, chaos, bicoherence measures, and prominent peaks. For feature selection, the algorithms PCA, hybrid stepwise regression, ridge regression, and correlation values were evaluated. It was evidenced that evoked potentials have a relative high level of importance, as well as the prominent peaks. On the other hand, the values of chaos and bicoherence measures, along with the gender, are the least representative features. These results are consistent among the four feature selection algorithms. In conclusion, 9 of the 14 features are representative of the data set and were used for the classification stage of this work.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceProceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830S (2020)spa
dc.titleEEG feature selection for ADHD detection in childrenspa
dcterms.bibliographicCitationVásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., de la Peña, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para La Atención De Trastornos Mentales. Cited 5 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. México, Instituto Nacional de Psiquiatría Ramón de la Fuspa
dcterms.bibliographicCitationMental Health, N.I. (2009) Trastorno De Déficit De Atención E Hiperactividad of publicación STR 09-3572 Accessed 23-July-2018spa
dcterms.bibliographicCitationChen, H., Chen, W., Song, Y., Sun, L., Li, X. EEG characteristics of children with attention-deficit/hyperactivity disorder (2019) Neuroscience, 406, pp. 444-456. Cited 7 times. www.elsevier.com/locate/neuroscience doi: 10.1016/j.neuroscience.2019.03.048spa
dcterms.bibliographicCitationMohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 43 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2spa
dcterms.bibliographicCitationGhassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (Open Access) (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 20 times. http://sciencedirect.utb.elogim.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024spa
dcterms.bibliographicCitationNazhvani, A.D., Boostani, R., Afrasiabi, S., Sadatnezhad, K. Classification of ADHD and BMD patients using visual evoked potential (2013) Clinical Neurology and Neurosurgery, 115 (11), pp. 2329-2335. Cited 22 times. doi: 10.1016/j.clineuro.2013.08.009spa
dcterms.bibliographicCitationÖztoprak, H., Toycan, M., Alp, Y.K., Arıkan, O., Doğutepe, E., Karakaş, S. Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity (Open Access) (2017) Clinical Neurophysiology, 128 (12), pp. 2400-2410. Cited 10 times. www.elsevier.com/inca/publications/store/6/0/1/5/2/8 doi: 10.1016/j.clinph.2017.09.105spa
dcterms.bibliographicCitationBadcock, N.A., Mousikou, P., Mahajan, Y., De Lissa, P., Thie, J., McArthur, G. Validation of the Emotiv EPOC® EEG gaming systemfor measuring research quality auditory ERPs (Open Access) (2013) PeerJ, 2013 (1), art. no. e38. Cited 193 times. https://peerj.com/articles/38.pdf doi: 10.7717/peerj.38spa
dcterms.bibliographicCitationAdeli, H., Zhou, Z., Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform (2003) Journal of Neuroscience Methods, 123 (1), pp. 69-87. Cited 806 times. doi: 10.1016/S0165-0270(02)00340-0spa
dcterms.bibliographicCitationMarkazi, S.A., Qazi, S., Stergioulas, L.S., Ramchurn, A., Bunce, D. Wavelet filtering of the P300 component in event-related potentials (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, art. no. 4029661, pp. 1719-1722. Cited 16 times. ISBN: 1424400325; 978-142440032-4 doi: 10.1109/IEMBS.2006.260691spa
dcterms.bibliographicCitationSubasi, A. EEG signal classification using wavelet feature extraction and a mixture of expert model (2007) Expert Systems with Applications, 32 (4), pp. 1084-1093. Cited 746 times. doi: 10.1016/j.eswa.2006.02.005spa
dcterms.bibliographicCitationMarkazi, S.A., Qazi, S., Stergioulas, L.S., Ramchurn, A., Bunce, D. Wavelet filtering of the P300 component in event-related potentials (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, art. no. 4029661, pp. 1719-1722. Cited 16 times. ISBN: 1424400325; 978-142440032-4 doi: 10.1109/IEMBS.2006.260691spa
dcterms.bibliographicCitationComerchero, M.D., Polich, J. P3a and P3b from typical auditory and visual stimuli (1999) Clinical Neurophysiology, 110 (1), pp. 24-30. Cited 340 times. doi: 10.1016/S0168-5597(98)00033-1spa
dcterms.bibliographicCitationDonchin, E., Ritter, W., McCallum, W.C. Cognitive psychophysiology: The endogenous components of the erp (1978) Event-Related Brain Potentials in Man, 349, p. 411. Cited 708 times.spa
dcterms.bibliographicCitationRangayyan, R.M. Biomedical Signal Analysis, p. 717.spa
dcterms.bibliographicCitationChallis, R.E., Kitney, R.I. Biomedical signal processing (in four parts) - Part 2 The frequency transforms and their inter-relationships (1991) Medical & Biological Engineering & Computing, 29 (1), pp. 1-17. Cited 50 times. doi: 10.1007/BF02446290spa
dcterms.bibliographicCitationBarry, R.J., Clarke, A.R., Johnstone, S.J., McCarthy, R., Selikowitz, M. Electroencephalogram θ/β Ratio and Arousal in Attention-Deficit/Hyperactivity Disorder: Evidence of Independent Processes (2009) Biological Psychiatry, 66 (4), pp. 398-401. Cited 114 times. doi: 10.1016/j.biopsych.2009.04.027spa
dcterms.bibliographicCitationPincus, S.M. Approximate entropy as a measure of system complexity (Open Access) (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (6), pp. 2297-2301. Cited 3823 times. www.pnas.org doi: 10.1073/pnas.88.6.2297spa
dcterms.bibliographicCitationPincus, S.M. Approximate entropy as a measure of irregularity for psychiatric serial metrics (2006) Bipolar Disorders, 8 (5 I), pp. 430-440. Cited 111 times. doi: 10.1111/j.1399-5618.2006.00375.xspa
dcterms.bibliographicCitationSohn, H., Kim, I., Lee, W., Peterson, B.S., Hong, H., Chae, J.-H., Hong, S., (...), Jeong, J. Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task (2010) Clinical Neurophysiology, 121 (11), pp. 1863-1870. Cited 56 times. doi: 10.1016/j.clinph.2010.04.007spa
dcterms.bibliographicCitationRichman, J.S., Moorman, J.R. Physiological time-series analysis using approximate and sample entropy (Open Access) (2000) American Journal of Physiology - Heart and Circulatory Physiology, 278 (6 47-6), pp. H2039-H2049. Cited 4167 times. https://www.physiology.org/loi/ajpheart doi: 10.1152/ajpheart.2000.278.6.h2039spa
dcterms.bibliographicCitationSwiderski, B., Osowski, S., Rysz, A. Lyapunov exponent of EEG signal for epileptic seizure characterization (2005) Proceedings of the 2005 European Conference on Circuit Theory and Design, 2, art. no. 1523016, pp. 153-156. Cited 24 times. ISBN: 0780390660; 978-078039066-9 doi: 10.1109/ECCTD.2005.1523016spa
dcterms.bibliographicCitationIEEE (2009). 10.1109/9780470545379.ch12spa
dcterms.bibliographicCitationLai, Y.-C., Harrison, M.A.F., Frei, M.G., Osorio, I. Inability of Lyapunov Exponents to Predict Epileptic Seizures (Open Access) (2003) Physical Review Letters, 91 (6). Cited 63 times. doi: 10.1103/PhysRevLett.91.068102spa
dcterms.bibliographicCitationBenSaida, A. (2018) Chaos Test Janspa
dcterms.bibliographicCitationLee, K. (2012) Fast Approximate Entropy. Cited 2 times. Marspa
dcterms.bibliographicCitationLee, K. (2012) Sample Entropy. Cited 8 times. Marspa
dcterms.bibliographicCitationLi, D., Li, X., Hagihira, S., Sleigh, J.W. Cross-frequency coupling during isoflurane anaesthesia as revealed by electroencephalographic harmonic wavelet bicoherence (Open Access) (2013) British Journal of Anaesthesia, 110 (3), pp. 409-419. Cited 15 times. https://www.journals.elsevier.com/british-journal-of-anaesthesia doi: 10.1093/bja/aes397spa
dcterms.bibliographicCitationShils, J.L., Litt, M., Skolnick, B.E., Stecker, M.M. Bispectral analysis of visual interactions in humans (1996) Electroencephalography and Clinical Neurophysiology, 98 (2), pp. 113-125. Cited 55 times. doi: 10.1016/0013-4694(95)00230-8spa
dcterms.bibliographicCitationSwami, A. (2003) Hosa - Higher Order Spectral Analysis Toolbox. Cited 154 times. Febspa
dcterms.bibliographicCitationAbdi, H., Williams, L.J. Principal component analysis (2010) Wiley Interdisciplinary Reviews: Computational Statistics, 2 (4), pp. 433-459. Cited 3498 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/123569814/PDFSTART doi: 10.1002/wics.101spa
dcterms.bibliographicCitationSong, F., Guo, Z., Mei, D. Feature selection using principal component analysis (2010) Proceedings - 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2010, 1, art. no. 5640135, pp. 27-30. Cited 134 times. ISBN: 978-076954223-2 doi: 10.1109/ICSEM.2010.14spa
dcterms.bibliographicCitationFaraway, J.J. (2005) Linear Models with R. Texts in Statistical Science, 63.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830S/EEG-feature-selection-for-ADHD-detection-in-children/10.1117/12.2579625.short?SSO=1
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1117/12.2579625
dc.subject.keywordsBioinformaticsspa
dc.subject.keywordsClassification (of information)spa
dc.subject.keywordsElectroencephalographyspa
dc.subject.keywordsElectrophysiologyspa
dc.subject.keywordsEntropyspa
dc.subject.keywordsFeature extractionspa
dc.subject.keywordsPower spectrumspa
dc.subject.keywordsRegression analysisTestingspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.