Mostrar el registro sencillo del ítem

dc.contributor.authorOsorio-Barone, A.
dc.contributor.authorContreras Ortiz, Sonia Helena
dc.date.accessioned2021-02-08T16:37:43Z
dc.date.available2021-02-08T16:37:43Z
dc.date.issued2020-11-03
dc.date.submitted2021-02-08
dc.identifier.citationA. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9955
dc.description.abstractThe need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance (MR) images. The architectures of the present study were VGG16, ResNet50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet50 with 94.89%, and finally, Xception with 92.18%.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceProceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830B (2020)spa
dc.titleDeep learning architectures for the analysis and classification of brain tumors in MR imagesspa
dcterms.bibliographicCitationWorld Health Organization—Cancer. Cited 2169 times. Accessed: 2020-07-14 https://www.who.int/health-topics/cancer#tab=tab_1spa
dcterms.bibliographicCitationGladson, C.L., Prayson, R.A., Liu, W.M. The pathobiology of glioma tumors (Open Access) (2010) Annual Review of Pathology: Mechanisms of Disease, 5, pp. 33-50. Cited 142 times. doi: 10.1146/annurev-pathol-121808-102109spa
dcterms.bibliographicCitationShimon, I., Melmed, S. Pituitary Tumor Pathogenesis (1997) Journal of Clinical Endocrinology and Metabolism, 82 (6), pp. 1675-1681. Cited 145 times. http://jcem.endojournals.org doi: 10.1210/jc.82.6.1675spa
dcterms.bibliographicCitationAfshar, P., Plataniotis, K.N., Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683759, pp. 1368-1372. Cited 38 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683759spa
dcterms.bibliographicCitationCheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., (...), Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition (Open Access) (2015) PLoS ONE, 10 (10), art. no. e0140381. Cited 119 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0140381&representation=PDF doi: 10.1371/journal.pone.0140381spa
dcterms.bibliographicCitationRehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning (2020) Circuits, Systems, and Signal Processing, 39 (2), pp. 757-775. Cited 26 times. http://www.springer.com/sgw/cda/frontpage/0,11855,5-40109-70-1176077-0,00.html doi: 10.1007/s00034-019-01246-3spa
dcterms.bibliographicCitationSaxena, P., Maheshwari, A., Maheshwari, S. (2019) Predictive Modeling of Brain Tumor: A Deep Learning Approach. Cited 3 times. arXiv preprintspa
dcterms.bibliographicCitationDong, H., Yang, G., Liu, F., Mo, Y., Guo, Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks (Open Access) (2017) Communications in Computer and Information Science, 723, pp. 506-517. Cited 207 times. http://www.springer.com/series/7899 ISBN: 978-331960963-8 doi: 10.1007/978-3-319-60964-5_44spa
dcterms.bibliographicCitationSimonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. Cited 20079 times. arXiv preprintspa
dcterms.bibliographicCitationChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 1791 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195spa
dcterms.bibliographicCitationHe, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 37128 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1117/12.2579618
dc.subject.keywordsBioinformaticsspa
dc.subject.keywordsBrainspa
dc.subject.keywordsComputer aided diagnosisspa
dc.subject.keywordsConvolutional neural networksspa
dc.subject.keywordsImage classificationspa
dc.subject.keywordsImage enhancementspa
dc.subject.keywordsLearning systemsspa
dc.subject.keywordsMagnetic resonancespa
dc.subject.keywordsMagnetic resonance imagingspa
dc.subject.keywordsNetwork architecturespa
dc.subject.keywordsTransfer learningspa
dc.subject.keywordsTumorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.