Mostrar el registro sencillo del ítem
Deep learning architectures for the analysis and classification of brain tumors in MR images
dc.contributor.author | Osorio-Barone, A. | |
dc.contributor.author | Contreras Ortiz, Sonia Helena | |
dc.date.accessioned | 2021-02-08T16:37:43Z | |
dc.date.available | 2021-02-08T16:37:43Z | |
dc.date.issued | 2020-11-03 | |
dc.date.submitted | 2021-02-08 | |
dc.identifier.citation | A. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9955 | |
dc.description.abstract | The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance (MR) images. The architectures of the present study were VGG16, ResNet50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet50 with 94.89%, and finally, Xception with 92.18%. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Proceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830B (2020) | spa |
dc.title | Deep learning architectures for the analysis and classification of brain tumors in MR images | spa |
dcterms.bibliographicCitation | World Health Organization—Cancer. Cited 2169 times. Accessed: 2020-07-14 https://www.who.int/health-topics/cancer#tab=tab_1 | spa |
dcterms.bibliographicCitation | Gladson, C.L., Prayson, R.A., Liu, W.M. The pathobiology of glioma tumors (Open Access) (2010) Annual Review of Pathology: Mechanisms of Disease, 5, pp. 33-50. Cited 142 times. doi: 10.1146/annurev-pathol-121808-102109 | spa |
dcterms.bibliographicCitation | Shimon, I., Melmed, S. Pituitary Tumor Pathogenesis (1997) Journal of Clinical Endocrinology and Metabolism, 82 (6), pp. 1675-1681. Cited 145 times. http://jcem.endojournals.org doi: 10.1210/jc.82.6.1675 | spa |
dcterms.bibliographicCitation | Afshar, P., Plataniotis, K.N., Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683759, pp. 1368-1372. Cited 38 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683759 | spa |
dcterms.bibliographicCitation | Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., (...), Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition (Open Access) (2015) PLoS ONE, 10 (10), art. no. e0140381. Cited 119 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0140381&representation=PDF doi: 10.1371/journal.pone.0140381 | spa |
dcterms.bibliographicCitation | Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning (2020) Circuits, Systems, and Signal Processing, 39 (2), pp. 757-775. Cited 26 times. http://www.springer.com/sgw/cda/frontpage/0,11855,5-40109-70-1176077-0,00.html doi: 10.1007/s00034-019-01246-3 | spa |
dcterms.bibliographicCitation | Saxena, P., Maheshwari, A., Maheshwari, S. (2019) Predictive Modeling of Brain Tumor: A Deep Learning Approach. Cited 3 times. arXiv preprint | spa |
dcterms.bibliographicCitation | Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks (Open Access) (2017) Communications in Computer and Information Science, 723, pp. 506-517. Cited 207 times. http://www.springer.com/series/7899 ISBN: 978-331960963-8 doi: 10.1007/978-3-319-60964-5_44 | spa |
dcterms.bibliographicCitation | Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. Cited 20079 times. arXiv preprint | spa |
dcterms.bibliographicCitation | Chollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 1791 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195 | spa |
dcterms.bibliographicCitation | He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 37128 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90 | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1117/12.2579618 | |
dc.subject.keywords | Bioinformatics | spa |
dc.subject.keywords | Brain | spa |
dc.subject.keywords | Computer aided diagnosis | spa |
dc.subject.keywords | Convolutional neural networks | spa |
dc.subject.keywords | Image classification | spa |
dc.subject.keywords | Image enhancement | spa |
dc.subject.keywords | Learning systems | spa |
dc.subject.keywords | Magnetic resonance | spa |
dc.subject.keywords | Magnetic resonance imaging | spa |
dc.subject.keywords | Network architecture | spa |
dc.subject.keywords | Transfer learning | spa |
dc.subject.keywords | Tumors | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.