Deep learning architectures for the analysis and classification of brain tumors in MR images
Ver/
Fecha
2020-11-03Autor(es)
Osorio-Barone, A.
Contreras Ortiz, Sonia Helena
Metadatos
Mostrar el registro completo del ítemResumen
The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance (MR) images. The architectures of the present study were VGG16, ResNet50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet50 with 94.89%, and finally, Xception with 92.18%.
Citar como
A. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618Utilice esta dirección para citar:
https://hdl.handle.net/20.500.12585/9955Recurso Original
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1Todo el contenido:
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1Colecciones
- Productos de investigación [1453]
Compatible para recolección con:
Archivos
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.