Mostrar el registro sencillo del ítem

dc.contributor.authorRomero, Guillermo
dc.contributor.authorFuertes Miquel, Vicente S.
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.authorPonz-Carcelén, Román
dc.contributor.authorBiel-Sanchis, Francisco
dc.date.accessioned2020-11-06T12:28:57Z
dc.date.available2020-11-06T12:28:57Z
dc.date.issued2020-08-18
dc.date.submitted2020-11-04
dc.identifier.citationRomero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines. Water 2020, 12, 2313.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9566
dc.description.abstractAir pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressure changes, one of the most widely used methods involves the installation of air valves along the pipeline route. These elements allow air exchange between the exterior and the interior of the pipe, which alleviates the pressure drops produced and thus prevents possible breaks or failures in the structure of the installation. This study uses a mathematical model previously validated by the authors in smaller installations to simulate all hydraulic variables involved in emptying processes over time. The purpose of these simulations is the validation of the mathematical model in real large-scale installations, and to do this, the results obtained with the mathematical model are compared with actual measurements made by the partner company. The hydraulic system selected for the study is a pipeline with a nominal diameter of 400 mm and a total length of 1020 m. The results obtained from the mathematical model show great similarity with the experimental measurements, thus validating the model for emptying large pipes.spa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater 2020, 12(8), 2313spa
dc.titleTransient phenomena generated in emptying operations in large-scale hydraulic pipelinesspa
dcterms.bibliographicCitationLaanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckoviˇc, S.; Hou, Q.; van’t Westende, J.M.C. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water-air interaction. J. Hydraul. Res. 2019, 57, 318–326.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E. Transient Phenomena during the Emptying Process of Water in Pressurized Pipelines. Ph.D. Thesis, Polytechnic University of Valencia, Valencia, Spain, 2019.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Mora-Meliá, D.; Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review. Urban Water J. 2019, 16, 299–311.spa
dcterms.bibliographicCitationVasconcelos, J.G.; Wright, S.J. Rapid flow startup in filled horizontal pipelines. J. Hydraul. Eng. 2008, 134, 984–992.spa
dcterms.bibliographicCitationLi, L.; Zhu, D.Z.; Huang, B. Analysis of pressure transient following rapid filling of a vented horizontal pipe. Water 2018, 10, 1698.spa
dcterms.bibliographicCitationBashiri-Atrabi, H.; Hosoda, T. The motion of entrapped air cavities in inclined ducts. J. Hydraul. Res. 2015, 53, 814–819.spa
dcterms.bibliographicCitationZhou, L.; Liu, D.; Karney, B. Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket. J. Hydraul. Eng. 2013, 139, 1041–1051spa
dcterms.bibliographicCitationRamezani, L.; Karney, B.; Malekpour, A. The challenge of air valves: A selective critical literature review. J. Water Resour. Plan. Manag. 2015, 141.spa
dcterms.bibliographicCitationRamezani, L.; Karney, B.; Malekpour, A. Encouraging effective air management in water pipelines: A critical review. J. Water Resour. Plan. Manag. 2016, 142, 04016055spa
dcterms.bibliographicCitationAmerican Water Works Association (AWWA). Manual of Water Supply Practices—M51: Air-Release, Air-Vacuum, and Combination Air Valves; American Water Works Association: Denver, CO, USA, 2016spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves. Water 2017, 9, 98.spa
dcterms.bibliographicCitationLiou, C.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539.spa
dcterms.bibliographicCitationZhou, L.; Liu, D. Experimental investigation of entrapped air pocket in a partially full water pipe. J. Hydraul. Res. 2013, 51, 469–474spa
dcterms.bibliographicCitationIzquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.; García-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590.spa
dcterms.bibliographicCitation. Fuertes-Miquel, V.S.; López-Jiménez, P.A.; Martínez-Solano, F.J.; López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves. Can. J. Civ. Eng. 2016, 43, 1052–1061.spa
dcterms.bibliographicCitationLeón, A.; Ghidaoui, M.; Schmidt, A.; Garcia, M. A robust two-equation model for transient-mixed flows. J. Hydraul. Res. 2010, 48, 44–56.spa
dcterms.bibliographicCitationChaudhry, M.H. Applied Hydraulic Transients, 3rd ed.; Springer: New York, NY, USA, 2014.spa
dcterms.bibliographicCitation. Wylie, E.; Streeter, V. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1993.spa
dcterms.bibliographicCitationMartins, S.C.; Ramos, H.M.; Almeida, A.B. Conceptual analogy for modelling entrapped air action in hydraulic systems. J. Hydraul. Res. 2015, 53, 678–686.spa
dcterms.bibliographicCitationTijsseling, A.; Hou, Q.; Bozkus, Z.; Laanearu, J. Improved one-dimensional models for rapid emptying and filling of pipelines. J. Press. Vessel Technol. 2016, 138, 031301.spa
dcterms.bibliographicCitationBalacco, G.; Apollonio, C.; Piccinni, A.F. Experimental analysis of air valve behaviour during hydraulic transients. J. Appl. Water Eng. Res. 2015, 3, 3–11.spa
dcterms.bibliographicCitationAbreu, J.; Cabrera, E.; Izquierdo, J.; García-Serra, J. Flow modeling in pressurized systems revisited. J. Hydraul. Eng. 1999, 125, 1154–1169spa
dcterms.bibliographicCitationDe Marchis, M.; Freni, G.; Milici, B. Experimental analysis of pressure-discharge relationship in a private water supply tank. J. Hydroinform. 2018, 20, 608–621.spa
dcterms.bibliographicCitationMohan, S.; Abhijith, G.R. Hydraulic analysis of intermittent water-distribution networks considering partial-flow regimes. J. Water Res. Plann. Manag. 2020, 146, 04020071.spa
dcterms.bibliographicCitationCollins, R.P.; Boxall, J.B.; Karney, B.W.; Brunone, B.; Meniconi, S. How severe can transients be after a sudden depressurization? J. Am. Water Work. Assoc. 2012, 104, E243–E251.spa
dcterms.bibliographicCitationAlexander, J.M.; Lee, P.J.; Davidson, M.; Duan, H.F.; Li, Z.; Murch, R.; Meniconi, S.; Brunone, B. Experimental validation of existing numerical models for the interaction of fluid transients with in-line air pockets. J. Fluids Eng. 2019, 141, 121101.spa
dcterms.bibliographicCitationBesharat, M.; Tarinejad, R.; Aalami, M.T.; Ramos, H.M. Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis. Water Resour. Manag. 2016, 30, 2687–2702.spa
dcterms.bibliographicCitationCovas, D.; Stoianov, I.; Ramos, H.M.; Graham, N.; Maksimovic, C.; Butler, D. Water hammer in pressurized polyethylene pipes: Conceptual model and experimental analysis. Urban Water J. 2010, 1, 177–197spa
dcterms.bibliographicCitationAlexander, J.M.; Lee, P.J.; Davidson, M.; Li, Z.; Murch, R.; Duan, H.F.; Meniconi, S.; Brunone, B. Experimental investigation of the interaction of fluid transients with an in-line air pocket. J. Hydraul. Eng. 2020, 146, 04019067spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2073-4441/12/8/2313
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/w12082313
dc.subject.keywordsHydraulic transientsspa
dc.subject.keywordsPipelines emptyingspa
dc.subject.keywordsTrapped airspa
dc.subject.keywordsAir valvesspa
dc.subject.keywordsMathematical modelspa
dc.subject.keywordsLarge-scale installationsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.