Mostrar el registro sencillo del ítem
A MIQP model for optimal location and sizing of dispatchable DGs in DC networks
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.date.accessioned | 2020-11-04T21:31:02Z | |
dc.date.available | 2020-11-04T21:31:02Z | |
dc.date.issued | 2020-08-27 | |
dc.date.submitted | 2020-11-03 | |
dc.identifier.citation | Montoya, O.D., Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst (2020). https://doi.org/10.1007/s12667-020-00403-x | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9541 | |
dc.description.abstract | The allocation and dimensioning of distributed generators (DGs) in direct current (DC) power grids were addressed in this study by using a mixed-integer quadratic programming (MIQP) formulation. The MIQP model corresponded to an approximation of the mixed-integer nonlinear programming (MINLP) model that represents this problem correctly. The proposed MIQP had, for its objective function, the minimization of the power losses; as constraints, it had power balance, voltage regulation, distributed generation capacity, and the number of DGs available, among others. The general algebraic modeling system (GAMS) was employed for solving the proposed MIQP as well as the MINLP formulation. Simulation results for one DC network with 21 nodes and another with 69 revealed that the proposed MIQP model obtains high-quality results regarding the locations of the generators, the objective function, and the power dispatch in comparison to the exact MINLP model and metaheuristic techniques recently reported in specialized literature. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Energy Systems (2020) Article in Press | spa |
dc.title | A MIQP model for optimal location and sizing of dispatchable DGs in DC networks | spa |
dcterms.bibliographicCitation | Garces, A.: Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 151(Supplement C), 149–153 (2017) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A.: Numerical methods for power flow analysis in DC networks: state of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 123, 106299 (2020) | spa |
dcterms.bibliographicCitation | Simpson-Porco, J.W., Dorfler, F., Bullo, F.: On resistive networks of constant-power devices. IEEE Trans. Circ. Syst. II Express Briefs 62(8), 811–815 (2015) | spa |
dcterms.bibliographicCitation | Sanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M.: Conditions for existence of equilibria of systems with constant power loads. IEEE Trans. Circuits Syst. I Regul. Pap. 61(7), 2204–2211 (2014) | spa |
dcterms.bibliographicCitation | Karimipour, D., Salmasi, F.R.: Stability analysis of AC microgrids with constant power loads based on Popov’s absolute stability criterion. IEEE Trans. Circ. Syst. II Express Briefs 62(7), 696–700 (2015) | spa |
dcterms.bibliographicCitation | Barabanov, N., Ortega, R., Griñó, R., Polyak, B.: On existence and stability of equilibria of linear time-invariant systems with constant power loads. IEEE Trans. Circuits Syst. I Regul. Pap. 63(1), 114–121 (2016) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A.: Sequential quadraticprogramming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 169, 18–23 (2019) | spa |
dcterms.bibliographicCitation | Garces, A.: On convergence of Newton’s method in power flow study for DC microgrids. IEEE Trans. Power Syst. 33(5), 5770–5777 (2018) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A.: Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 163, 375–381 (2018) | spa |
dcterms.bibliographicCitation | Garces, A., Montoya, D., Torres, R.: Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In: 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212–1217 (2016) | spa |
dcterms.bibliographicCitation | Molzahn, D.K.: Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems. IEEE Trans. Circ. Syst. II 65(5), 672–676 (2018) | spa |
dcterms.bibliographicCitation | Li, J., Liu, F., Wang, Z., Low, S., Mei, S.: Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 33(5), 5496–5506 (2018) | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Cruz-Peragón, F., Alcalá, G.: Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization. Energies 13(7), 1703 (2020) | spa |
dcterms.bibliographicCitation | Kaur, S., Kumbhar, G., Sharma, J.: A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 63, 609–617 (2014) | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F., Gonziez-Montoya, D., Ramos-Paja, C.A.: Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 11(4), 1–27 (2018) | spa |
dcterms.bibliographicCitation | Kansal, S., Kumar, V., Tyagi, B.: Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks. Int. J. Electr. Power Energy Syst. 75, 226–235 (2016) | spa |
dcterms.bibliographicCitation | Gampa, S.R., Das, D.: Optimum placement and sizing of DGs considering average hourly variations of load. Int. J. Electr. Power Energy Syst. 66, 25–40 (2015) | spa |
dcterms.bibliographicCitation | Ali, E., Elazim, S.A., Abdelaziz, A.: Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renewable Energy 101, 1311–1324 (2017) | spa |
dcterms.bibliographicCitation | Georgilakis, P.S., Hatziargyriou, N.D.: Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans. Power Syst. 28(3), 3420–3428 (2013) | spa |
dcterms.bibliographicCitation | Nekooei, K., Farsangi, M.M., Nezamabadi-Pour, H., Lee, K.Y.: An improved multi-objective harmony search for optimal placement of DGs in distribution systems. IEEE Trans. Smart Grid 4(1), 557–567 (2013) | spa |
dcterms.bibliographicCitation | Acharya, N., Mahat, P., Mithulananthan, N.: An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 28(10), 669–678 (2006) | spa |
dcterms.bibliographicCitation | Shaaban, M.F., Atwa, Y.M., El-Saadany, E.F.: DG allocation for benefit maximization in distribution networks. IEEE Trans. Power Syst. 28(2), 639–649 (2013) | spa |
dcterms.bibliographicCitation | Khalesi, N., Rezaei, N., Haghifam, M.-R.: DG allocation with application of dynamic programming for loss reduction and reliability improvement. Int. J. Electr. Power Energy Syst. 33(2), 288–295 (2011) | spa |
dcterms.bibliographicCitation | Montoya, O.D.: A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. (2019) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Grisales-Noreña, L.: Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 115, 105442 (2020) | spa |
dcterms.bibliographicCitation | Nasir, M., Iqbal, S., Khan, H.A.: Optimal planning and design of low-voltage low-power solar DC microgrids. IEEE Trans. Power Syst. 33(3), 2919–2928 (2018) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Gil-González, W., Garces, A., Ramos-Paja, C.A.: Optimal location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS. In: 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), pp. 1–5 (Nov 2018) | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F., Garzon-Rivera, O.D., Montoya, O.D., Ramos-Paja, C.A.: Hybrid metaheuristic optimization methods for optimal location and sizing DGs in DC networks. Springer, ch. Applied Computer Sciences in Engineering, pp. 214–225 (2019) | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F.: Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model. J. Energy Storage 21, 1–8 (2019) | spa |
dcterms.bibliographicCitation | Garces, A., Montoya, O.D.: A potential function for the power flow in DC microgrids: an analysis of the uniqueness and existence of the solution and convergence of the algorithms. J. Control Autom. Electr. Syst. 5(30), 794–801 (2019) | spa |
dcterms.bibliographicCitation | Skworcow, P., Paluszczyszyn, D., Ulanicki, B., Rudek, R., Belrain, T.: Optimisation of pump and valve schedules in complex large-scale water distribution systems using gams modelling language. Procedia Eng. 12th International Conference on Computing and Control for the Water Industry, vol. 70, pp. 1566–1574 (2014) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Grisales-Noreña, L.: An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. (2019) | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Perea-Moreno, A.-J., Hernandez-Escobedo, Q.: Optimal placement and sizing of wind generators in AC grids considering reactive power capability and wind speed curves. Sustainability 12(7), 2983 (2020) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Alcalá, G., Hernandez-Escobedo, Q.: Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry 12(2), 322 (2020) | spa |
dcterms.bibliographicCitation | Naghiloo, A., Abbaspour, M., Mohammadi-Ivatloo, B., Bakhtari, K.: GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew Sustain. Energy Rev. 52, 1559–1565 (2015) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Grisales-Noreña, L., Orozco-Henao, C., Serra, F.: Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies 12(23), 4494 (2019) | spa |
dcterms.bibliographicCitation | Soroudi, A.: Power System Optimization Modeling in GAMS. Springer, New York (2017) | spa |
dcterms.bibliographicCitation | Amin, W.T., Montoya, O.D., Grisales-Noreña, L.F.: Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation. In: Communications in Computer and Information Science. Springer, New York, pp. 552–564 (2019) | spa |
dcterms.bibliographicCitation | Tartibu, L., Sun, B., Kaunda, M.: Multi-objective optimization of the stack of a thermoacoustic engine using GAMS. Appl. Soft Comput. 28, 30–43 (2015) | spa |
dcterms.bibliographicCitation | Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Springer, New York (2009) | spa |
dcterms.bibliographicCitation | Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2007) | spa |
dcterms.bibliographicCitation | Bliek, C., Bonami, P., Lodi, A.: Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report. In: Proceedings of the Twenty-Sixth RAMP Symposium, pp. 171–180 (2014). http://www.orsj.or.jp/ramp/2014/paper/4-3.pdf | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A.: Optimal power flow on DC microgrids: a quadratic convex approximation. IEEE Trans. Circ. Syst. II, 1–1 (2018) | spa |
dcterms.bibliographicCitation | Montoya, O.D., Garces, A., Castro, C.A.: Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation. IEEE Latin Am. Trans. 16(8), 2213–2220 (2018) | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://link.springer.com/article/10.1007/s12667-020-00403-x | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1007/s12667-020-00403-x | |
dc.subject.keywords | Direct current power grids | spa |
dc.subject.keywords | Distributed generators | spa |
dc.subject.keywords | Mixed-integer programming model | spa |
dc.subject.keywords | Mixed-integer nonlinear programming model | spa |
dc.subject.keywords | Optimal power flow | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.