Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
Loading...
Files
Date
2019-03-11
Authors
Montoya, Oscar Danilo
Gil-González, Walter
Garrido Arévalo, Víctor Manuel
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum power consumption of the dc network. The recursive solution approach corresponds to a sequential power flow approach by incrementing all values of the power consumptions uniformly. Simulation results validate the efficiency of the proposed method in comparison to the large-scale nonlinear solvers available in the general algebraic modeling system optimization package. The MATLAB programming environment was employed for implementing the proposed recursive Newton-Raphson method.
Description
Keywords
Citation
O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211.