Mostrar el registro sencillo del ítem
Power quality detection and classification using wavelet and support vector machine
dc.contributor.author | Garrido Arévalo, Víctor Manuel | |
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Holguín, M. | |
dc.date.accessioned | 2020-11-04T20:17:52Z | |
dc.date.available | 2020-11-04T20:17:52Z | |
dc.date.issued | 2019-09-24 | |
dc.date.submitted | 2020-10-30 | |
dc.identifier.citation | Garrido-Arévalo, V., Gil-González, W. and Holguin, M., 2020. Power quality detection and classification using wavelet and support vector machine. Journal of Physics: Conference Series, 1448, p.012002. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9530 | |
dc.description.abstract | This work presents the identification and classification of various disturbances that affect the quality of energy, seen as the quality of the voltage wave (harmonics, sag, swell and flicker). For this, the wavelet transform is used, which allows to have characteristic patterns as input signals of the support vector machine, these are evaluated in their different configurations, bi-class, minimum output coding, error correcting output and one versus all. For all of them, in the first instance they were trained with 200 samples, then the results were validated with 100 samples and finally the evaluation was made with 500 different samples, obtaining that the best result is presented with the minimum output coding configuration. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Physics: Conference Series, Volume 1448 | spa |
dc.title | Power quality detection and classification using wavelet and support vector machine | spa |
dcterms.bibliographicCitation | W Morsi 2012 A wavelet-based approach for reactive power metering in modern three-phase grids considering time-varying power quality disturbances Electric Power Systems Research 87 31 | spa |
dcterms.bibliographicCitation | Barros J, Diego R and De Apráiz M 2012 Applications of wavelets in electric power quality: Voltage events Electric Power Systems Research 88 130 | spa |
dcterms.bibliographicCitation | Saini M and Kapoor R 2012 Classification of power quality events – A review Int. Journal of Electrical Power & Energy Systems 43(1) 11 | spa |
dcterms.bibliographicCitation | Chirag N and Prasanta K 2013 Power quality index based on discrete wavelet transform Int. Journal of Electrical Power & Energy Systems 53 994 | spa |
dcterms.bibliographicCitation | Ferreira D, Seixas J, Cerqueira A and Duque C 2015 A new power quality deviation index based on principal curves Electric Power Systems Research 125 8 | spa |
dcterms.bibliographicCitation | Morsi W and El-Hawary M 2010 Novel power quality indices based on wavelet packet transform for nonstationary sinusoidal and non-sinusoidal disturbances Electric Power Systems Research 80(7) 753 | spa |
dcterms.bibliographicCitation | Zhang Y, Dong Z, Liu A, Wang S, Ji G, Zhang Z and Yang J 2015 Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine Journal of Medical Imaging and Health Informatics 5(7) 1395 | spa |
dcterms.bibliographicCitation | Devi Arockia Vanithaa C, Devarajb D and Venkatesuluc M 2015 Gene expression data classification using support vector machine and mutual information-based gene selection Procedia Computer Science 47 13 | spa |
dcterms.bibliographicCitation | Wu L et al. 2017 Detection of american football head impacts using biomechanical features and support vector machine classification Scientific Reports 8(855) 1 | spa |
dcterms.bibliographicCitation | Ramesh N and Jagan B 2017 Fault classification in power systems using EMD and SVM Ain Shams Engineering Journal 8(2) 103 | spa |
dcterms.bibliographicCitation | Jan S, Lee Y, Shin J and Koo I 2017 Sensor fault classification based on support vector machine and statistical time-domain features IEEE Access 5 8682 | spa |
dcterms.bibliographicCitation | Raya P and Mishrab D 2016 Support vector machine-based fault classification and location of a long transmission line Engineering Science and Technology, an International Journal 19(3) 1368 | spa |
dcterms.bibliographicCitation | Abid A, Khan M, Ullah A, Alam M and Sohail M 2017 Real time health monitoring of industrial machine using multiclass support vector machine 2nd International Conference on Control and Robotics Engineering (Bangkok: IEEE) p 77 | spa |
dcterms.bibliographicCitation | De Yong D, Bhowmik S and Magnago F 2015 An effective power quality classifier using wavelet transform and support vector machines Expert Systems with Applications 42(15-16) 6075 | spa |
dcterms.bibliographicCitation | Liu Z, Cui Y and Li W 2015 A classification method for complex power quality disturbances using EEMD and rank wavelet SVM IEEE Transactions on Smart Grid 6(4) 1678 | spa |
dcterms.bibliographicCitation | Li J, Teng Z, Tang Q and Song J 2015 Detection and classification of power quality disturbances using double resolution S-Transform and DAG-SVMs IEEE Transactions on Instrumentation and Measurement 65(10) 2302 | spa |
dcterms.bibliographicCitation | Abdoos A, Mianaei P and Ghadikolaei M 2016 Combined VMD-SVM based feature selection method for classification of power quality events Applied Soft Computing 38 637 | spa |
dcterms.bibliographicCitation | Garrido-Arévalo V, Díaz-Rodríguez J and Pardo-García A 2015 Analysis of the power quality using intelligent techniques WSEAS Transactions on Power Systems 10 15 | spa |
dcterms.bibliographicCitation | Garrido-Arévalo V, Díaz-Rodríguez J and Pardo-García A 2014 Classification of power quality phenomena using intelligent techniques Transmission & Distribution Conference and Exposition - Latin America (Medellín: IEEE) p 10 | spa |
dcterms.bibliographicCitation | Suthaharan S 2016 Machine learning models and algorithms for big data classification Integrated Series in Information Systems 36 207 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012002/meta | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 448 (2020) 10.1088/1742-6596/1448/1/012002 | |
dc.subject.keywords | Energía eléctrica | spa |
dc.subject.keywords | Calidad de la energía | spa |
dc.subject.keywords | Voltaje | spa |
dc.subject.keywords | Redes eléctricas | spa |
dc.subject.keywords | Distribución de energía eléctrica | spa |
dc.subject.keywords | Electric power | spa |
dc.subject.keywords | Quality of energy | spa |
dc.subject.keywords | Voltage | spa |
dc.subject.keywords | Electrical networks | spa |
dc.subject.keywords | Electric power distribution | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_c94f | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.