Mostrar el registro sencillo del ítem

dc.contributor.authorGarrido Arévalo, Víctor Manuel
dc.contributor.authorGil-González, Walter
dc.contributor.authorHolguín, M.
dc.date.accessioned2020-11-04T20:17:52Z
dc.date.available2020-11-04T20:17:52Z
dc.date.issued2019-09-24
dc.date.submitted2020-10-30
dc.identifier.citationGarrido-Arévalo, V., Gil-González, W. and Holguin, M., 2020. Power quality detection and classification using wavelet and support vector machine. Journal of Physics: Conference Series, 1448, p.012002.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9530
dc.description.abstractThis work presents the identification and classification of various disturbances that affect the quality of energy, seen as the quality of the voltage wave (harmonics, sag, swell and flicker). For this, the wavelet transform is used, which allows to have characteristic patterns as input signals of the support vector machine, these are evaluated in their different configurations, bi-class, minimum output coding, error correcting output and one versus all. For all of them, in the first instance they were trained with 200 samples, then the results were validated with 100 samples and finally the evaluation was made with 500 different samples, obtaining that the best result is presented with the minimum output coding configuration.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series, Volume 1448spa
dc.titlePower quality detection and classification using wavelet and support vector machinespa
dcterms.bibliographicCitationW Morsi 2012 A wavelet-based approach for reactive power metering in modern three-phase grids considering time-varying power quality disturbances Electric Power Systems Research 87 31spa
dcterms.bibliographicCitationBarros J, Diego R and De Apráiz M 2012 Applications of wavelets in electric power quality: Voltage events Electric Power Systems Research 88 130spa
dcterms.bibliographicCitationSaini M and Kapoor R 2012 Classification of power quality events – A review Int. Journal of Electrical Power & Energy Systems 43(1) 11spa
dcterms.bibliographicCitationChirag N and Prasanta K 2013 Power quality index based on discrete wavelet transform Int. Journal of Electrical Power & Energy Systems 53 994spa
dcterms.bibliographicCitationFerreira D, Seixas J, Cerqueira A and Duque C 2015 A new power quality deviation index based on principal curves Electric Power Systems Research 125 8spa
dcterms.bibliographicCitationMorsi W and El-Hawary M 2010 Novel power quality indices based on wavelet packet transform for nonstationary sinusoidal and non-sinusoidal disturbances Electric Power Systems Research 80(7) 753spa
dcterms.bibliographicCitationZhang Y, Dong Z, Liu A, Wang S, Ji G, Zhang Z and Yang J 2015 Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine Journal of Medical Imaging and Health Informatics 5(7) 1395spa
dcterms.bibliographicCitationDevi Arockia Vanithaa C, Devarajb D and Venkatesuluc M 2015 Gene expression data classification using support vector machine and mutual information-based gene selection Procedia Computer Science 47 13spa
dcterms.bibliographicCitationWu L et al. 2017 Detection of american football head impacts using biomechanical features and support vector machine classification Scientific Reports 8(855) 1spa
dcterms.bibliographicCitationRamesh N and Jagan B 2017 Fault classification in power systems using EMD and SVM Ain Shams Engineering Journal 8(2) 103spa
dcterms.bibliographicCitationJan S, Lee Y, Shin J and Koo I 2017 Sensor fault classification based on support vector machine and statistical time-domain features IEEE Access 5 8682spa
dcterms.bibliographicCitationRaya P and Mishrab D 2016 Support vector machine-based fault classification and location of a long transmission line Engineering Science and Technology, an International Journal 19(3) 1368spa
dcterms.bibliographicCitationAbid A, Khan M, Ullah A, Alam M and Sohail M 2017 Real time health monitoring of industrial machine using multiclass support vector machine 2nd International Conference on Control and Robotics Engineering (Bangkok: IEEE) p 77spa
dcterms.bibliographicCitationDe Yong D, Bhowmik S and Magnago F 2015 An effective power quality classifier using wavelet transform and support vector machines Expert Systems with Applications 42(15-16) 6075spa
dcterms.bibliographicCitationLiu Z, Cui Y and Li W 2015 A classification method for complex power quality disturbances using EEMD and rank wavelet SVM IEEE Transactions on Smart Grid 6(4) 1678spa
dcterms.bibliographicCitationLi J, Teng Z, Tang Q and Song J 2015 Detection and classification of power quality disturbances using double resolution S-Transform and DAG-SVMs IEEE Transactions on Instrumentation and Measurement 65(10) 2302spa
dcterms.bibliographicCitationAbdoos A, Mianaei P and Ghadikolaei M 2016 Combined VMD-SVM based feature selection method for classification of power quality events Applied Soft Computing 38 637spa
dcterms.bibliographicCitationGarrido-Arévalo V, Díaz-Rodríguez J and Pardo-García A 2015 Analysis of the power quality using intelligent techniques WSEAS Transactions on Power Systems 10 15spa
dcterms.bibliographicCitationGarrido-Arévalo V, Díaz-Rodríguez J and Pardo-García A 2014 Classification of power quality phenomena using intelligent techniques Transmission & Distribution Conference and Exposition - Latin America (Medellín: IEEE) p 10spa
dcterms.bibliographicCitationSuthaharan S 2016 Machine learning models and algorithms for big data classification Integrated Series in Information Systems 36 207spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012002/meta
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi448 (2020) 10.1088/1742-6596/1448/1/012002
dc.subject.keywordsEnergía eléctricaspa
dc.subject.keywordsCalidad de la energíaspa
dc.subject.keywordsVoltajespa
dc.subject.keywordsRedes eléctricasspa
dc.subject.keywordsDistribución de energía eléctricaspa
dc.subject.keywordsElectric powerspa
dc.subject.keywordsQuality of energyspa
dc.subject.keywordsVoltagespa
dc.subject.keywordsElectrical networksspa
dc.subject.keywordsElectric power distributionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.