Power quality detection and classification using wavelet and support vector machine

Loading...
Thumbnail Image

Date

2019-09-24

Authors

Garrido Arévalo, Víctor Manuel
Gil-González, Walter
Holguín, M.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This work presents the identification and classification of various disturbances that affect the quality of energy, seen as the quality of the voltage wave (harmonics, sag, swell and flicker). For this, the wavelet transform is used, which allows to have characteristic patterns as input signals of the support vector machine, these are evaluated in their different configurations, bi-class, minimum output coding, error correcting output and one versus all. For all of them, in the first instance they were trained with 200 samples, then the results were validated with 100 samples and finally the evaluation was made with 500 different samples, obtaining that the best result is presented with the minimum output coding configuration.

Description

Keywords

Citation

Garrido-Arévalo, V., Gil-González, W. and Holguin, M., 2020. Power quality detection and classification using wavelet and support vector machine. Journal of Physics: Conference Series, 1448, p.012002.
60.pdf