Mostrar el registro sencillo del ítem
Classification of pluviometric networks located in the region of Bogotá, Colombia using artificial neural networks
dc.contributor.author | Garrido Arévalo, Augusto Rafael | |
dc.contributor.author | Agudelo, L M | |
dc.contributor.author | Obregon, N | |
dc.contributor.author | Garrido Arévalo, Víctor Manuel | |
dc.coverage.spatial | Bogotá | |
dc.date.accessioned | 2020-09-10T21:24:45Z | |
dc.date.available | 2020-09-10T21:24:45Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-09-09 | |
dc.identifier.citation | Garrido-Arévalo, A. R., Agudelo, L. M., Obregon, N., & Garrido, V. M. (2020). Classification of pluviometric networks located in the region of bogotá, colombia using artificial neural networks. Paper presented at the Journal of Physics: Conference Series, , 1448(1) doi:10.1088/1742-6596/1448/1/0120088 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9386 | |
dc.description.abstract | This work presents a methodology for the classification of pluviometric networks using artificial neural networks. For this, the network of stations registered in the Corporación Autónoma Regional de Cundinamarca, Colombia, was analyzed. The network studied consists of 182 stations for the measurement of precipitation and it has a historical series that goes, in some cases, from 1931 to the present. For the classification, three scenarios called types were proposed, in which the number of neurons in the output layer was varied. It was significant that when comparing the results of the different types, the permanence of certain features in the classification was found, indicating the validity of the classification. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Journal of Physics: Conference Series 1448 (2020) 012008 | spa |
dc.title | Classification of pluviometric networks located in the region of Bogotá, Colombia using artificial neural networks | spa |
dcterms.bibliographicCitation | Gontijo W 2007 Avaliação e redimensionamento de redes para o monitoramento fluviométrico utilizando o método sharp e o conceito de entropía (Brasilia: Universidad de Brasilia) p 52 | spa |
dcterms.bibliographicCitation | Asimakopoulou F, Tsekouras G, Gonos I and Stathopulos I 2013 Estimation of seasonal variation of ground resistance using artificial neural networks Electric Power Systems Research 94 113 | spa |
dcterms.bibliographicCitation | Kheirkhah A, Azadeh A, Saberi M, Azaron M and Shakouri H 2013 Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis Computers & Industrial Engineering 64 425 | spa |
dcterms.bibliographicCitation | Adib H, Haghbakhsh R, Saidi M, Takassi M, Sharifi F, Koolivand M, Rahimpour M and Keshtkar S 2013 Modeling and optimization of FischereTropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm Journal of Natural Gas Science and Engineering 10 14 | spa |
dcterms.bibliographicCitation | Fukushima K 2013 Artificial vision by multi-layered neural networks: Neocognitron and its advances Neural Networks 37 103 | spa |
dcterms.bibliographicCitation | Taormina R, Chau K and Sethi R 2012 Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon Engineering Applications of Artificial Intelligence 25 1670 | spa |
dcterms.bibliographicCitation | Mishra N, Soni H, Sharma S and Upadhyay A 2018 Development and analysis of artificial neural network models for rainfall prediction by using time-series data International Journal of Intelligent Systems and Applications 11 16 | spa |
dcterms.bibliographicCitation | Ainslie B, Reuten D, Le N and Zidek J 2009 Application of an entropy-based Bayesian optimization technique to the redesign of an existing monitoring network for single air pollutants Journal of Environmental Management 90 2715 | spa |
dcterms.bibliographicCitation | Puangthongthub S, Wangwongwatana S, Kamens R and Serre M 2007 Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network Atmospheric Environment 41 7788 | spa |
dcterms.bibliographicCitation | Turlapaty A, Anantharaj V, Younan N and Turk F 2010 Precipitation data fusion using vector space transformation and artificial neural networks Pattern Recognition Letters 31 1184 | spa |
dcterms.bibliographicCitation | Kim J and Pachepsky Y 2010 Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation Journal of Hydrology 394 305 | spa |
dcterms.bibliographicCitation | Liu Q, Shi Z, Fang N, Zhu H and Ai L 2013 Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach Geomorphology 186 181 | spa |
dcterms.bibliographicCitation | Lin G and Chen L 2006 Identification of homogeneous regions for regional frequency analysis using the self-organizing map Journal of Hydrology 324(4) 1 | spa |
dcterms.bibliographicCitation | Chowdhury M, Alouani A and Hossain F 2010 Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater Stochastic Environmental Research and Risk Assessment 24(1) 1 | spa |
dcterms.bibliographicCitation | Mishra A and Coulibaly P 2009 Hydrometric network evaluation for Canadian watersheds Journal of Hydrology 380(3-4) 420 | spa |
dcterms.bibliographicCitation | Lin G and Chen L 2005 Identification of homogeneous regions for regional frequency analysis using the self-organizing map Journal of Hydrology 324(1) 1 | spa |
dcterms.bibliographicCitation | González F 2012 Agrupación ecohidrológica de corrientes en la cuenca Magdalena-Cauca dentro del marco de referencia ELOHA, empleando mapas autorganizados de Kohonen (Bogotá: Pontificia Univerisidad Javeriana) p 29 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012008 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1448/1/012008 | |
dc.subject.keywords | Stream Flow | spa |
dc.subject.keywords | Flood Forecasting | spa |
dc.subject.keywords | Water Tables | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Otro | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.