Mostrar el registro sencillo del ítem

dc.contributor.authorGarrido Arévalo, Augusto Rafael
dc.contributor.authorAgudelo, L M
dc.contributor.authorObregon, N
dc.contributor.authorGarrido Arévalo, Víctor Manuel
dc.coverage.spatialBogotá
dc.date.accessioned2020-09-10T21:24:45Z
dc.date.available2020-09-10T21:24:45Z
dc.date.issued2020
dc.date.submitted2020-09-09
dc.identifier.citationGarrido-Arévalo, A. R., Agudelo, L. M., Obregon, N., & Garrido, V. M. (2020). Classification of pluviometric networks located in the region of bogotá, colombia using artificial neural networks. Paper presented at the Journal of Physics: Conference Series, , 1448(1) doi:10.1088/1742-6596/1448/1/0120088spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9386
dc.description.abstractThis work presents a methodology for the classification of pluviometric networks using artificial neural networks. For this, the network of stations registered in the Corporación Autónoma Regional de Cundinamarca, Colombia, was analyzed. The network studied consists of 182 stations for the measurement of precipitation and it has a historical series that goes, in some cases, from 1931 to the present. For the classification, three scenarios called types were proposed, in which the number of neurons in the output layer was varied. It was significant that when comparing the results of the different types, the permanence of certain features in the classification was found, indicating the validity of the classification.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Physics: Conference Series 1448 (2020) 012008spa
dc.titleClassification of pluviometric networks located in the region of Bogotá, Colombia using artificial neural networksspa
dcterms.bibliographicCitationGontijo W 2007 Avaliação e redimensionamento de redes para o monitoramento fluviométrico utilizando o método sharp e o conceito de entropía (Brasilia: Universidad de Brasilia) p 52spa
dcterms.bibliographicCitationAsimakopoulou F, Tsekouras G, Gonos I and Stathopulos I 2013 Estimation of seasonal variation of ground resistance using artificial neural networks Electric Power Systems Research 94 113spa
dcterms.bibliographicCitationKheirkhah A, Azadeh A, Saberi M, Azaron M and Shakouri H 2013 Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis Computers & Industrial Engineering 64 425spa
dcterms.bibliographicCitationAdib H, Haghbakhsh R, Saidi M, Takassi M, Sharifi F, Koolivand M, Rahimpour M and Keshtkar S 2013 Modeling and optimization of FischereTropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm Journal of Natural Gas Science and Engineering 10 14spa
dcterms.bibliographicCitationFukushima K 2013 Artificial vision by multi-layered neural networks: Neocognitron and its advances Neural Networks 37 103spa
dcterms.bibliographicCitationTaormina R, Chau K and Sethi R 2012 Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon Engineering Applications of Artificial Intelligence 25 1670spa
dcterms.bibliographicCitationMishra N, Soni H, Sharma S and Upadhyay A 2018 Development and analysis of artificial neural network models for rainfall prediction by using time-series data International Journal of Intelligent Systems and Applications 11 16spa
dcterms.bibliographicCitationAinslie B, Reuten D, Le N and Zidek J 2009 Application of an entropy-based Bayesian optimization technique to the redesign of an existing monitoring network for single air pollutants Journal of Environmental Management 90 2715spa
dcterms.bibliographicCitationPuangthongthub S, Wangwongwatana S, Kamens R and Serre M 2007 Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network Atmospheric Environment 41 7788spa
dcterms.bibliographicCitationTurlapaty A, Anantharaj V, Younan N and Turk F 2010 Precipitation data fusion using vector space transformation and artificial neural networks Pattern Recognition Letters 31 1184spa
dcterms.bibliographicCitationKim J and Pachepsky Y 2010 Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation Journal of Hydrology 394 305spa
dcterms.bibliographicCitationLiu Q, Shi Z, Fang N, Zhu H and Ai L 2013 Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach Geomorphology 186 181spa
dcterms.bibliographicCitationLin G and Chen L 2006 Identification of homogeneous regions for regional frequency analysis using the self-organizing map Journal of Hydrology 324(4) 1spa
dcterms.bibliographicCitationChowdhury M, Alouani A and Hossain F 2010 Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater Stochastic Environmental Research and Risk Assessment 24(1) 1spa
dcterms.bibliographicCitationMishra A and Coulibaly P 2009 Hydrometric network evaluation for Canadian watersheds Journal of Hydrology 380(3-4) 420spa
dcterms.bibliographicCitationLin G and Chen L 2005 Identification of homogeneous regions for regional frequency analysis using the self-organizing map Journal of Hydrology 324(1) 1spa
dcterms.bibliographicCitationGonzález F 2012 Agrupación ecohidrológica de corrientes en la cuenca Magdalena-Cauca dentro del marco de referencia ELOHA, empleando mapas autorganizados de Kohonen (Bogotá: Pontificia Univerisidad Javeriana) p 29spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012008
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1088/1742-6596/1448/1/012008
dc.subject.keywordsStream Flowspa
dc.subject.keywordsFlood Forecastingspa
dc.subject.keywordsWater Tablesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaOtrospa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.