Mostrar el registro sencillo del ítem
On the nonlinear control of a single-phase current source converter for sinusoidal voltage generation
dc.contributor.author | Montoya, O.D. | |
dc.contributor.author | Acevedo Patiño, Óscar | |
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Holguín, M. | |
dc.contributor.author | Serra, F.M. | |
dc.date.accessioned | 2020-09-10T21:22:36Z | |
dc.date.available | 2020-09-10T21:22:36Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-09-07 | |
dc.identifier.citation | Montoya, O. D., Acevedo, O., Gil-González, W., Holguín, M., & Serra, F. M. (2020). On the nonlinear control of a single-phase current source converter for sinusoidal voltage generation. Paper presented at the Journal of Physics: Conference Series, , 1448(1) doi:10.1088/1742-6596/1448/1/012011 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9377 | |
dc.description.abstract | Colombian power system is being transformed for the large-scale integration of renewable energy resources and energy storage systems; all of these are integrated by power electronic converters controlled by voltage and current sources. In addition, for regulatory policies it is required that the alternating current networks that feeds linear and nonlinear loads, can provide pure sinusoidal voltage and current forms in terms of frequency and amplitude. To guarantee it, in this paper the design of a nonlinear controller for a single-phase current source converter is explored, which is switched through a pulse-width modulated signal for providing sinusoidal voltages on linear loads. It is applied a feedback nonlinear control design on the dynamical model of the converter by using its averaged representation. The proposed control strategy allows guaranteeing asymptotic stability in the sense of Lyapunov for closed-loop operation. In steady state conditions the voltage behavior on the linear load evidences a sinusoidal form with an estimation error lower than 0.667%, which can be considered negligible for any practical power system application. All the simulations are conducted via MATLAB software 2017b licensed by Universidad Tecnologica de Bolívar, Colombia. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Journal of Physics: Conference Series, Volume 1448 | spa |
dc.title | On the nonlinear control of a single-phase current source converter for sinusoidal voltage generation | spa |
dcterms.bibliographicCitation | Montoya O D, Gil-Gonzalez W, and Serra F M 2018 PBC approach for SMES Devices in electric distribution networks ´ IEEE Trans. Circuits Syst. II 65(12) 2003 | spa |
dcterms.bibliographicCitation | Gil-Gonzalez W, Garces A, and Escobar A 2019 Passivity-based control and stability analysis for hydro-turbine governing ´ systems Appl. Math. Modell. 68 471 | spa |
dcterms.bibliographicCitation | Jing W, Xiaowei C, and Jielin L 2016 Research on the single-phase single-stage photovoltaic grid-connected current source inverter China International Conference on Electricity Distribution (CICED) (Xi’an: IEEE) | spa |
dcterms.bibliographicCitation | Montoya O D, Gil-Gonzalez W, and Garces A 2019 Distributed energy resources integration in single-phase microgrids: ´ An application of IDA-PBC and PI-PBC approaches Int. J. Electr. Power Energy Syst. 112 221 | spa |
dcterms.bibliographicCitation | Oishi H, Okada H, Ishizaka K, and Itoh R 2002 Single-phase soft-switched current-source inverter for utility interactive photovoltaic power generation system Proceedings of the Power Conversion Conference-Osaka (Cat. No.02TH8579) (Osaka: IEEE) p 632 | spa |
dcterms.bibliographicCitation | Komurcugil H 2010 Steady-state analysis and passivity-based control of single-phase PWM current-source inverters IEEE Trans. Ind. Electron. 57(3) 1026 | spa |
dcterms.bibliographicCitation | Montoya O D, and Gil-Gonzalez W 2018 Time-domain analysis for current control in single-phase distribution networks ´ using SMES devices with PWM-CSCs Electric Power Components and Systems 46(18) 1938 | spa |
dcterms.bibliographicCitation | Komurcugil H 2008 Passivity-based control of single-phase PWM current-source inverters IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society (Taipei: IEEE) p 545 | spa |
dcterms.bibliographicCitation | Komurcugil H 2010 Nonlinear control strategy for single-phase PWM current-source inverters 35th Annual Conference of IEEE Industrial Electronics (Porto: IEEE) p 682 | spa |
dcterms.bibliographicCitation | Li R T H, Chung H S, and Chan T K M 2007 An active modulation technique for single-phase grid-connected CSI IEEE Trans. Power Electron. 22(4) 1373 | spa |
dcterms.bibliographicCitation | Yazdanpanah M J, Semsar E, and Siahkolah B 2002 A robust controller for single-phase pwm inverters IFAC Proceedings Volumes 35(1) 289 | spa |
dcterms.bibliographicCitation | Gil-Gonzalez W, and Montoya O D 2019 Active and reactive power conditioning using SMES devices with PMW-CSC: ´ A feedback nonlinear control approach Ain Shams Eng. J. 10(2) 369 | spa |
dcterms.bibliographicCitation | Leon-Vargas F, García-Jaramillo M, and Krejci E 2019 Pre-feasibility of wind and solar systems for residential selfsufficiency in four urban locations of Colombia: Implication of new incentives included in Law 1715 Renewable Energy 130 1082 | spa |
dcterms.bibliographicCitation | Amin W T, Montoya O D, Garrido V M, Gil-Gonzalez W, and Garces A 2019 Voltage and frequency regulation on ´ isolated AC three-phase microgrids via s-DERs IEEE Green Technologies Conference (GreenTech) (Lafayette: IEEE) | spa |
dcterms.bibliographicCitation | Hamid M I, Jusoh A, and Anwari M 2014 Photovoltaic plant with reduced output current harmonics using generation-side active power conditioner IET Renewable Power Gener. 8(7) 817 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012011 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1448/1/012011 | |
dc.subject.keywords | Asymptotic stability | spa |
dc.subject.keywords | Electric power systems | spa |
dc.subject.keywords | MATLAB | spa |
dc.subject.keywords | Renewable energy resources | spa |
dc.subject.keywords | Closed-loop operation | spa |
dc.subject.keywords | Energy storage systems | spa |
dc.subject.keywords | Non-linear controllers | spa |
dc.subject.keywords | Nonlinear control design | spa |
dc.subject.keywords | Power electronic converters | spa |
dc.subject.keywords | ower system applications | spa |
dc.subject.keywords | Pulse-width-modulated | spa |
dc.subject.keywords | Steady-state condition | spa |
dc.subject.keywords | Power converters | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Otro | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.